
TG4MSQL

TG4MSQL v1
i

Oracle
Transparent

Gateway
to

SQL*Server

Author: G S Chapman

Date: 9th January 2006

Version: 2.0

Location of Document:

TG4MSQL

TG4MSQL v1
i

DOCUMENT HISTORY

Version Date Changed By: Remarks

1.0 18/08/05 G S Chapman Initial version

1.0A 25/08/05 G S Chapman Update with basics of gateway package

1.0B 3/11/05 G S Chapman Update with new details.

1.0C 7/11/05 G S Chapman More details on views upon tables with NVARCHAR2
fields greater than 1000 characters.

1.0D 14/11/05 G S Chapman Update with gateway padding information.

1.0E 18/11/05 G S Chapman Add create_views_3 procedure details

1.0F 6/12/05 G S Chapman Changes to reflect new data drop.

2.0 9/01/06 G S Chapman Changes for UAT environment.

DOCUMENT DISTRIBUTION

Copy No Name Role Organisation

TG4MSQL

ii
TG4MSQL v1

DOCUMENT REFERENCES

Document Name Originator Part Number Version Date

Oracle Transparent Gateway for Microsoft SQL Server
Administrator's Guide 10g Release 1 (10.1) for Microsoft
Windows

Oracle Corp B10544_01 10.1

Oracle Transparent Gateway for Microsoft SQL Server
Administrator's Guide Release 2 (9.2) for Microsoft
Windows NT

Oracle Corp A96552_01 9.2

Oracle9i Messaging Gateway Supplement Release 1
(9.0.1)

Oracle Corp A90837_01 9.0.1

Oracle Transparent Gateway for Microsoft SQL Server
Administrator’s Guide 10g Release 2 (10.2) for Microsoft
Windows (32-bit)

Oracle Corp B14270-01 10.2 June 2005

Oracle Database Heterogeneous Connectivity
Administrator's Guide 10g Release 2 (10.2)

Oracle Corp B14232-01 10.2 June 2005

TG4MSQL

iii
TG4MSQL v1

TABLE OF CONTENTS
1 Introduction... 1
2 Installation of SQL*Server Transparent gateway..................... 3
2.1 Release Version specifics .. 3
2.1.1 Oracle V9.2.0 ..3
2.1.2 Oracle TG4MSQL V10.1.0.2 ...3
2.1.3 Oracle TG4MSQL V10.2.1 ..3
2.2 Oracle Database dictionary table requirements.. 4
2.3 TNSNAMES entries... 4
2.3.1 Common Errors..4
2.4 Listener.ora .. 4
2.4.1 Common Errors..5
2.5 Gateway Configuration ... 5
2.5.1 SQL*Server Oracle connection account ...6
2.5.2 Gateway transaction modes...6
2.5.3 Configuring for Two-Phase Commit...6
2.5.3.1 Task 1: Create a Recovery Account and Password 6
2.5.3.2 Task 2: Create the Transaction Log Table ... 7
2.5.4 Specifying an Owner...7
2.6 Testing connectivity ... 7
2.6.1 Common Errors..8
2.7 Common Errors and Solutions ... 8
2.8 Errors encountered with UAT setup .. 9
2.9 Oracle Connectivity.. 10
3 Customer setup.. 13
3.1 Oracle databases ... 13
3.1.1 PODS9.. 13
3.1.2 PODS.. 13
3.2 UTILS schema... 13
3.3 Views... 13
3.3.1 View required in SQL*Server ... 14
3.4 Known Issues.. 16
3.4.1 NVARCHAR type longer than 1000 characters .. 16
3.4.2 NVARCHAR padding.. 16

4 Warehouse Requirements .. 17
4.1 Long table names and long column names.. 17
4.2 SQL*Server data type conversion .. 17
4.2.1 Create Table As Select (CTAS) Syntax .. 18
4.3 Inline View Support ... 20
4.4 Data Type Conversion .. 20
4.4.1 Date variables ... 21
4.4.2 NCHAR variables .. 21
4.4.3 NVARCHAR padding.. 21
4.4.4 Microsoft SQL Server IMAGE, TEXT and NTEXT Data Types.................................... 21

5 Workarounds ... 22
5.1 Simple select using DBMS_HS_PASSTHROUGH.. 22
5.2 Select using cursor for loop... 23

TG4MSQL

iv
TG4MSQL v1

5.3 Creating a SQL*Server view.. 23
6 GATEWAY Package... 25
6.1 Package error codes... 28
7 Tuning Considerations.. 29

TABLE OF FIGURES
Figure 1 - Service Gateway .. 1
Figure 2 - Gateway Process Flow... 1
Figure 3 - View Creation Script ... 27

TABLES
Table 1- Data type conversions .. 21
Table 2- GATEWAY package procedures... 26

Appendices
A. Gateway Specifications
A.1 Supported Views and Tables
A.2 Data Dictionary Mapping
A.3 Useful SQL Server view

TG4MSQL

v
TG4MSQL v1

PURPOSE OF DOCUMENT
This document describes the installation, configuration and usage of the Oracle Transparent
Gateway to SQL*Server installed at a customer site.

TG4MSQL

TG4MSQL v1
1

1 Introduction
The requirement is to describe the use of the Oracle Transparent Gateway for Microsoft
SQL*Server (TG4MSQL) at a customer site to access data held with certain SQL*Server production
databases from the data warehouse databases.

There are three areas of operation for effective interoperation: SQL translation, data dictionary
translation and data type translation. To meet these requirements Oracle provides Generic
Connectivity and Transparent Gateways. The combination is the Heterogeneous Services (HS)
component, integrated in the Oracle server and agent, which provides information for and
connectivity to non-Oracle systems.

Figure 1 - Service Gateway

In addition there is the provision of Pass-through SQL, which enables the use of native SQL
against a non-Oracle database system. This flexibility enables the execution of functions or
procedures on non-Oracle systems that are not supported by the Generic Connectivity or the
Transparent Gateway. The Pass-through SQL supports both result sets and bind variables, and
can also be used to perform DDL on the non-Oracle system.

Figure 2 - Gateway Process Flow

1. The client application sends a query over Oracle Net to the Oracle database server.

2. Heterogeneous Services and the gateway converts the Oracle SQL statement into a SQL
statement understood by the non-Oracle database system.

3. The Oracle database server sends the query over to the gateway using Oracle Net.

4. For the first transaction in a session, the gateway logs into non-Oracle database system using
a username and password that is valid in the non-Oracle system.

TG4MSQL

TG4MSQL v1
2

5. The gateway retrieves data using non-Oracle database system SQL statements.

6. The gateway converts retrieved data into a format compatible with the Oracle database server.

7. The gateway returns query results to the Oracle database server, again using Oracle Net
Services.

8. The Oracle database server passes the query results to the client application using Oracle Net.
The database link remains open until the gateway session is finished or the database link is
explicitly closed.

TG4MSQL

TG4MSQL v1
3

2 Installation of SQL*Server Transparent gateway
The following describes the setup and experiences in getting the SQL*server transparent gateway
from Oracle to work. The initial version used for the setup was TG4MSQL (Transparent Gateway
for MS SQL Server) for Windows based platform, release 10.1.0.4. Initially connections were
made from an Oracle 9.2.0.6 and 10.1.0.4 server. Later connections were to Oracle 9.2.0.7 and
10.2.0.1 databases.

The configuration was later changed to use release 2 of the 10g gateway (10.2.0.1).

NOTE: Problems were experienced using the base release of 10g (10.1.0.1) for the gateway and
the patch to version 10.1.0.4 was required to avoid the problems. Connections from a 9.2.0.5
database experienced problems assessing system tables.

2.1 Release Version specifics
2.1.1 Oracle V9.2.0

For V9.2.0.1.2 (9iR2 and above) gateways, the access method uses ODBC. So it is necessary to
have the MS SQL Server ODBC driver installed on the gateway machine. If it is not available,
download the latest MDAC Microsoft Data Access Components) from the Microsoft Web page and
install it. This package contains a SQL Server ODBC driver. This was not necessary with the
customer setup.

2.1.2 Oracle TG4MSQL V10.1.0.2

With the OUI (Oracle Universal Installer) install TG4MSQL. This product is part of the server
installation CDs. (Start OUI, choose a separate. Oracle Home, select the Oracle database for
installation. Then choose custom install. A product list pops up where you have to scroll down to
ORACLE TRANSPARENT GATEWAY; click on the '+' in front and a product list opens. Choose the
SQL*Server gateway to install)

Within the standard Oracle installed directories (within the Oracle Home default
c:\oracle\product\10.1.0\) a directory called TG4MSQL will be created and a file called
TG4MSQL.EXE is placed within the bin directory of the Oracle Home.

If not already done, upgrade the base release by applying the 10.1.0.4 patch set to the same
Oracle Home directory that the gateway was installed within.

2.1.3 Oracle TG4MSQL V10.2.1

As with the earlier release, with the OUI (Oracle Universal Installer) install TG4MSQL. This
product is part of the server installation CDs. (Start OUI, choose a separate. Oracle Home, select
the Oracle database for installation. Then choose custom install. A product list pops up where you
have to scroll down to ORACLE TRANSPARENT GATEWAY; click on the '+' in front and a product
list opens. Choose the SQL*Server gateway to install)

Within the standard Oracle installed directories (within the Oracle Home default
c:\oracle\product\10.2.0\tg_1), a directory called TG4MSQL will be created and a file called
TG4MSQL.EXE is placed within the bin directory of the Oracle Home.

The release 2 installation prompts for the name of the SQL*Server instance to connect to and
create the entries in the listener.ora file. Unfortunately there was still a need to edit the file and

TG4MSQL

TG4MSQL v1
4

add the specifics for tg4msql.exe file to be executed when the listener is contacted. Once this
change was made the listener performed without any further problems.

At the time of writing there are no patches released for this current version (10.2.0.1).

2.2 Oracle Database dictionary table requirements
TG4MSQL needs data dictionary tables in the Oracle database.

To check their existence, run a query on i.e. SYS.HS_FDS_CLASS.

If it fails, run the caths.sql script located in ORACLE_HOME\RDBMS\ADMIN\ as user sys or
internal. In the case of the customer’s installations this step was not necessary.

2.3 TNSNAMES entries
This file is located in ORACLE_HOME\NETWORK\ADMIN.

An entry such as the following is required:

tg4msql.machine3.customer.uk=
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=rmachine3.customer.uk)
 (PORT=1521)
)
 (CONNECT_DATA=(SID=tg4msql))
 (HS=OK)
)

Entries of the above form will be required within every tnsnames.ora file upon servers that are
required to connect to the SQL*Server gateway. In the current installation there are 2
SQL*Server databases that are being used. The two SIT instances were/are installed upon
VMWare machines known as MACHINE3 and MACHINE4. The UAT instance is/was installed upon
server 10.117.241.202 (MACHINE01).

2.3.1 Common Errors

Make sure, that there are 2 closing brackets after the SID; the HS keyword is outside of the
Connect Data block.

Further ensure that only the TNS Alias is at the first position of the line; all other lines must start
at least with one SPACE (blank); otherwise it is identified as an alias and the configuration is
incorrect.

2.4 Listener.ora
This file is located in the ORACLE_HOME\NETWORK\ADMIN directory as well.

Add the entry for the gateway SID to the SID_List of the listener.ora and restart the listener
afterwards. (After the restart a service handler for tg4msql should exist). The example
listener.ora file is listed below for the 10G release 2 version installed..

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = C:\oracle\product\10.2.0\tg_1)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (SID_NAME = tg4msql)

TG4MSQL

TG4MSQL v1
5

 (ORACLE_HOME = C:\oracle\product\10.2.0\tg_1)
 (PROGRAM = C:\oracle\product\10.2.0\tg_1\bin\tg4msql)
)
)

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = MACHINE3.customer.uk)(PORT = 1521))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
)
)

Lines 8 to 12 were required to be added to the listener for the 10G release 2 installations.

If the listener service does not exist run the net configuration agent and define the listener
service. Stop and restart the listener service and ensure that the gateway service exists.

2.4.1 Common Errors

After configuring the listener, restart it from the command line

(lsnrctl -> stop, start)

Then check the service summary. It has to contain a service handler for the TG4MSQL SID.

See section 2.8 for issues that may be encountered when trying to restart the listener.

2.5 Gateway Configuration
Adjust the configuration file of the gateway. It is located in ORACLE_HOME\TG4MSQL\ADMIN.
The name depends on the SID used for the gateway. Multiple SIDs, for multiple connections to
SQL*Server instances will require multiple initialisation files, one for each instance.

In our testing the listener SID used is tg4msql and so the configuration file must be named
inittg4msql.ora. The 10G release 1 version of the file is shown below.

#
HS init parameters
#
HS_DB_NAME=TG4MSQL
HS_DB_DOMAIN=MACHINE1.UK.COMPANY.INTRANET
HS_FDS_CONNECT_INFO=MACHINE1\\PCS.Northwind
HS_FDS_TRACE_LEVEL=OFF
HS_FDS_RECOVERY_ACCOUNT=oracle_con
HS_FDS_RECOVERY_PWD=password

The HS_DB_NAME and the HS_DB_DOMAIN parameters can be specified to enable a match to be
made with the expected SID for the calling database. Otherwise the service name HO.WORLD is
returned which will be an issue if global_names is set to TRUE.

The 10G release 2 installation uses the account name of ‘ODS_link’ for its connection. The account
password and the parameters HS_DB_NAME and HS_DB_DOMAIN are changed as appropriate.

TG4MSQL

TG4MSQL v1
6

2.5.1 SQL*Server Oracle connection account

An account is required within the SQL*Server database to enable the connection to be made. This
account can be any desired name and password and as a minimum requires ‘select’ privileges on
he tables to which access is required. Other permissions may be granted as required.

At the current time only read access is provided to the SQL*Server tables for the created account
‘ODS_link’.

2.5.2 Gateway transaction modes

The gateway supports the following transaction capabilities:

 ■ COMMIT_CONFIRM

 ■ READ_ONLY

 ■ SINGLE_SITE

 ■ TWO_PHASE_COMMIT

By default, the gateway runs in COMMIT_CONFIRM transaction mode. When the Microsoft SQL
Server database is updated by a transaction, the gateway becomes the commit point site. The
Oracle database server commits the unit of work in the Microsoft SQL Server database after
verifying that all Oracle databases in the transaction have successfully prepared the transaction.
Only one gateway can participate in an Oracle two-phase commit transaction as the commit point
site.

Note: The current gateway is only configured in COMMIT_CONFIRM transaction mode by the
customer. This is by intent as there is no requirement to run procedures upon the source
SQL*Server databases.

2.5.3 Configuring for Two-Phase Commit

The following has not been configured upon the customer gateways but is included in this
document for completeness, in case there is a need to configure it later.

To enable the TWO_PHASE_COMMIT transaction mode, create a recovery account and password
and create a log table. The log table, called by default HS_TRANSACTION_LOG, is where two-
phase commit transactions are recorded.

2.5.3.1 Task 1: Create a Recovery Account and Password

For the gateway to recover distributed transactions, a recovery account and password must be set
up in the Microsoft SQL Server database. By default, both the user name of the account and the
password are RECOVER. The name of the account can be changed with the gateway initialization
parameter HS_FDS_RECOVERY_ACCOUNT. The account password can be changed with the
gateway initialization parameter HS_FDS_RECOVERY_PWD.

Note: Oracle Corporation recommends that you do not use the default value RECOVER for the
user name and password. Moreover, storing plain-text as user name and password in the
initialization file is not a good security policy. There is now a utility called tg4pwd, that should be
used for encryption. Refer to Chapter 4, ’Encrypting Initialization parameters’ in the
Heterogeneous Connectivity Administration Guide for further details.

1. Set up a user account in the Microsoft SQL Server database. Both the user name and password
must be a valid Microsoft SQL Server user name and password.

2. In the initialization parameter file, set the following gateway initialization parameters:

TG4MSQL

TG4MSQL v1
7

HS_FDS_RECOVERY_ACCOUNT to the user name of the Microsoft SQL Server user account
you set up for recovery.

HS_FDS_RECOVERY_PWD to the password of the Microsoft SQL Server user account you
set up for recovery.

For information about HS_FDS_RECOVERY_ACCOUNT and HS_FDS_RECOVERY_PWD, see the
relevant Oracle documentation.

2.5.3.2 Task 2: Create the Transaction Log Table

When configuring the gateway for two-phase commit, a table must be created in the Microsoft SQL
Server database for logging transactions. The gateway uses the transaction log table to check the
status of failed transactions that were started at the Microsoft SQL Server database by the
gateway and registered in the table.

Note: Updates to the transaction log table cannot be part of an Oracle distributed transaction.

Note: The information in the transaction log table is required by the recovery process and must
not be altered. The table must be used, accessed, or updated only by the gateway.

The table, called HS_TRANSACTION_LOG, consists of two columns, GLOBAL_TRAN_ID, data type
CHAR(64) NOT NULL and TRAN_COMMENT, data type CHAR(255).

Any desired name can be used for the log table, other than HS_TRANSACTION_LOG, by specifying
the other name using the HS_FDS_TRANSACTION_LOG initialization parameter.

Create the transaction log table in the user account you created in 2.5.3.1 “Task 1: Create a
Recovery Account and Password”. Because the transaction log table is used to record the status of
a gateway transaction, the table must reside at the database where the Microsoft SQL Server
update takes place. Also, the transaction log table must be created under the owner of the
recovery account.

Note: To utilize the transaction log table, users of the gateway must be granted privileges on the
table.

To create a transaction log table use the tg4msql_tx.sql script, located in the directory
ORACLE_HOME\tg4msql\admin where ORACLE_HOME is the directory under which the gateway is
installed. Use isql (or sqlplus) to execute the script at the MS-DOS prompt, as follows:

Isql: -Urecovery_account -Precovery_account_password [-Sserver] -itg4msql_tx.sql

2.5.4 Specifying an Owner

Instead of using the default owner name for the Microsoft SQL Server tables as defined in
Microsoft SQL Server, or explicitly specifying a different owner in the SQL statements, you can
specify a default owner that is used whenever a name is not explicitly specified in the SQL
statements.

To specify the owner, set the gateway initialization parameter HS_FDS_DEFAULT_OWNER in the
initialization parameter file.

2.6 Testing connectivity
Testing the connectivity between Oracle database and the SQL Server:

create a database link within the Oracle database to the SQL Server:

create database link tg4msql connect to "oracle_con"

TG4MSQL

TG4MSQL v1
8

identified by "<password of oracle_con>" using 'tg4msql';

select * from all_catalog@tg4msql;

[Alternatively the link could be specified completely without reference to the tnsnames.ora entry
as follows:

create database link tg4msql connect to "oracle_con" identified by

"<password of oracle_con>"

using '(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=hostname)

(PORT=1521))(CONNECT_DATA=(SID=tg4msql))(HS=OK))';

]

Example selecting a demo table of the MS Northwind database:

select "TerritoryID" from "EmployeeTerritories"@<link name>;

2.6.1 Common Errors

The usernames, passwords, table names, views, columns .are case sensitive.

For creating the database link, make sure you surround the username, password by double quotes
and write them as they are defined in the MS SQL Server.

Another common error is that the TG4MSQL does not allow OS Authentication (Windows
Authentication) for the SQL Server. Only SQL Server authentication with a username AND a
password is supported. Make sure, that the SQL Server Security option is checked to allow both
authentication methods.

Table names and column names have to be less than 30 characters long. Set up a view to get
around these issues on the SQL*Server database.

The session does not display the requested information and complains that the database link
points to another service name. This is a global_names setting. Set the global_names parameter
for the session to false and retry the query.

2.7 Common Errors and Solutions
/**/

ORA-28509: unable to establish a connection to non-Oracle system

ORA-02063: preceding line from TG4MSQL

/**/

Cause:

This indicates a problem with the Oracle configuration files.

Action:

Make sure the HOST parameter in the tnsnames.ora file is correct.

Make sure the PORT number is correct.

Make sure the SID name is correct in both the TNSNAMES.ORA and LISTENER.ORA

/**/

TG4MSQL

TG4MSQL v1
9

ORA-28500: connection from ORACLE to a non-Oracle system returned this message:

[Transparent gateway for MS SQL Server] The environment variable

<HS_FDS_CONNECT_INFO> is not set.

ORA-02063: preceding 2 lines from TG4MSQL

/**/

Cause:

Incorrect parameter settings in the HS init.ora file.

Action:

Check HS_FDS_CONNECT_INFO in the TG4MSQL init.ora file.

It might be missing or TG4MSQL is not able to find the correct initialisation file.

Make sure the HS init.ora file exists in the ORACLE_HOME\tg4msql\admin directory and
has the same name as the SID in the LISTENER.ORA.

Example: If SID=mssql in the listener.ora file, then the init.ora file would be named
ORACLE_HOME\hs\admin\initmssql.ora

/**/

ORA-00942: table or view does not exist

[Transparent gateway for ODBC]DRV_OpenTable: [Microsoft][ODBC SQL Server

Driver][SQL Server]Invalid object name '%table%'. (SQL State: S0002; SQL Code:208)

ORA-02063: preceding 2 lines from TG4MSQL

/**/

Cause:

The init.ora file specifies the wrong MS SQL Server database.

A second cause might be that MS SQL Server tables are case sensitive and thus should be
surrounded by double quotes.

2.8 Errors encountered with UAT setup
There were a number of problems encountered with the installation of the gateway on the
Windows UAT environment. These are described below along with the solution implemented.

Windows machine name for UAT environment = MACHINE01.customer.uk

AIX machine hosting ODS database = warehouse2.customer.uk

1. The installation of the Oracle software upon MACHINE01 went smoothly, although at the
time the host name was not known and the IP address was used in the inittg4msql.ora file.
This is suspected to be one possible cause of a problem relating to connecting to the
SQL*Server database. This configuration file was modified to use the hostname, although
this may not be the real cause of the UAT connection problem, which is complicated by
other issues described below.

TG4MSQL

TG4MSQL v1
10

2. The AIX hosts were unable to ping the Windows server, although it worked from
devwarehouse1. No routes were available from rgdsdw2.

3. After establishing a database link from devwarehouse1 a select from a table upon the
SQL*Server database would just hang, with no response from the gateway.

4. Adding an entry for the warehouse2 server into the UAT DNS environment did not produce
any improvement.

5. A sqlplus session from the Windows server to the warehouse2 ODS database worked only
when the IP address was hard coded. Using the host name did not work.

6. Observation of the SQL*Server database showed that connected from oracle were
establishing sessions within the database.

7. There were multiple invocations of the executable tg4msql.exe running upon the windows
server. These relate directly one to one, with the sessions initiated from Oracle.

8. It was found that ‘killing’ the oracle sessions (within the ODS database) did not remove
the sessions, which indicated they were marked for KILL but still remained. Killing the
associated SQL*Server sessions also did not remove the oracle sessions within ODS. Only
once the tg4msql.exe processes running on the Windows server were killed could did the
Oracle sessions on PODS disappear.

9. It was discovered that ACL had been established upon the Windows UAT environment to
prevent any communication between the machines within the UAT environment and any
productions machines was the cause of the lack of communication between the AIX node
and the Windows SQL*Server node. Once the ACL had been removed all communication
sprang into life and worked without any further problems.

10. It will be necessary to re-establish the ACL settings in the near future now the connectivity
has been proved.

NOTE: It is not possible to bounce the Windows gateway listener whilst any of the tg4msql.exe
processes are running upon the machine. This is due to the tg4msql.exe processes using port
1521 (the listener default), and not releasing it, to enable the listener process to restart. This can
be illustrated by running the command ‘netstat –n’ upon the windows machine and viewing the
port allocation.

2.9 Oracle Connectivity
The following describes the method that Oracle uses when connecting to a database. This is
included due to the problems encountered in setting up the UAT environment due to the ACL
settings, but it is equally applicable to firewall setup generally.

When the Oracle client makes a connection to the database e.g. (sqlplus userid/password@alias),
it compares the alias name supplied in the sqlplus line and looks for a match in the
TNSNAMES.ORA file or Names server. Once it obtains the address for the database server, a
connection attempt is made to the server from the client. The Listener is contacted on the
database server and port redirection can take place depending on the platform, configuration of
the INIT<SID>.ORA file and/or the Oracle product being used. The underlying network layer on
the server will obtain a free port from the Operating System (OS) and send back to the client via
the Listener the new port assignment. The client will then try to connect to the database on a new
port. This is where connection failure normally occurs.

TG4MSQL

TG4MSQL v1
11

A remote Oracle client making a connection to an Oracle database can fail if there is a firewall
installed between the client and the server and if port redirection is taking place. The firewall will
block the connection to the new port when the Oracle client connects to the database - the client
typically fails with Oracle errors ORA-12203 or ORA-12535. [In the case of the UAT setup no error
message was seen, since the ACL prevented any response what so ever.] The client connection
failure is due to port redirection from the Database Server's operating system. Port redirection
requires the client to connect to the database using a different port than originally configured in
the configuration files. Oracle Multi-Threaded Server (MTS) on Unix platforms, (without specifying
the address with the ports in the INIT<SID>.ORA file), Oracle Secure Sockets Layer (SSL) and
Windows NT/2000 platforms will cause port redirection.

A Net8 level 16 client trace file can verify if the problem is a firewall issue. In the SQLNET.ORA file
on the client add the following lines:

 trace_level_client = 16
 trace_file_client = client
 trace_directory_client = a valid directory and path
Save the changes to the SQLNET.ORA file and try connecting with SQL*Plus once to force the
error. This will create a trace file. Here are several sample excerpts from a level 16-trace file to
give an indication of what to look for.

The initial packets sent to the listener on port 1521 in trace file.

 niotns: Calling address:
(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
 (HOST=server1)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=v920.world)
 (CID=(PROGRAM=D:\V920\BIN\SQLPLUSW.EXE)(HOST=server1)(USER=system))))
 nladget: entry
 nladget: exit
 nscall: entry
 nscall: connecting...
 nsc2addr: entry
 nttbnd2addr: entry
 nttbnd2addr: port resolved to 1521
The received packet from the listener telling the client to use 1729 port (search for "NSPTRD").

 nscon: recving a packet
 nsprecv: entry
 nsbal: entry
 nsbgetfl: entry
 nsbgetfl: normal exit
 nsmal: entry
 nsmal: 44 bytes at 0xb892d0
 nsmal: normal exit
 nsbal: normal exit
 nsprecv: reading from transport...
 nttrd: entry
 nttrd: socket 232 had bytes read=64
 nttrd: exit
 nsprecv: 64 bytes from transport
 nsprecv: tlen=64, plen=64, type=5
 nsprecv: packet dump
 nsprecv:00 40 00 00 05 00 00 00 |.@......|
 nsprecv:00 36 28 41 44 44 52 45 |.6(ADDRE|
 nsprecv:53 53 3D 28 50 52 4F 54 |SS=(PROT|
 nsprecv:4F 43 4F 4C 3D 74 63 70 |OCOL=tcp|
 nsprecv:29 28 48 4F 53 54 3D 31 |)(HOST=1|
 nsprecv:33 38 2E 32 2E 32 31 33 |38.2.213|

TG4MSQL

TG4MSQL v1
12

 nsprecv:2E 36 31 29 28 50 4F 52 |.61)(POR|
 nsprecv:54 3D 31 37 32 39 29 29 |T=1729))| <- port change
 nsprecv: normal exit
 nscon: got NSPTRD packet
 nscon: got 54 bytes connect data
 nscon: exit (0)
The client resolving the connection to port 1729.

 nscall: connecting...
 nsc2addr: entry
 nttbnd2addr: entry
 nttbnd2addr: port resolved to 1729
 nttbnd2addr: using host IP address: 138.2.213.61
 nttbnd2addr: exit
 nsc2addr: normal exit
You can see the send packets sent from the client on port 1521 (or your port if different) to the
Listener. There will be receive packets returned from the server to the client reflecting a new port
assignment. Then the client will send packets again from the client only this time to a different
port. The connection will then fail at this point in the trace file.

The port that is assigned to the client is randomly chosen by the operating system and cannot be
modified. It can be any free port available (usually above port 1024) that the server determines is
not is use by any other software or hardware device.

TG4MSQL

TG4MSQL v1
13

3 Customer setup
This section details the specific set for the customers project.

3.1 Oracle databases
Two databases existing upon the server rdsgdw2 named ODS and ODS9 have been set up to
enable connection to the 2 SQL*server databases located upon MACHINE3 and MACHINE4.

3.1.1 PODS9

This database is a Release 9.2.0.7 database.

3.1.2 PODS

This database is a Release 10.2.0.1 database.

3.2 UTILS schema
The UTILS schema within these databases is used to own the GATEWAYS package. In addition
this schema has been given the privilege to create and delete PUBLIC database links.

The following script was run to create the 2 database links for SIT within these databases.

drop public database link omega_sit1;
create public database link omega_sit1
connect to "ODS_link" identified by "xxxxx"
using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=machine3.customer.uk)(PORT=152
1))(CONNECT_DATA=(SID=tg4msql))(HS=OK))';
drop public database link omega_sit2;
create public database link omega_sit2
connect to "ODS_link" identified by "xxxxx"
using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=machine4.customer.uk)(PORT=152
1))(CONNECT_DATA=(SID=tg4msql))(HS=OK))';

The password has been changed in the script above to ensure security.

The database links for the UAT and PROD environment are similar, differing only in the host name,
username/passwords and obviously the link name itself.

3.3 Views
Some views are required in the SQL*Server database to ease selection from the Oracle database.
Views created will be named as the first 28 characters of the table name appended with the
characters ‘_V’.

Six views are required and these are detailed below.

The views were created on the MACHINE4 database [Omega_sit2] and then copied over by the
system administrator to MACHINE3 [Omega_sit1]. The code for the creation is part of the
GATEWAY package for the OMEGA_SIT2 instance.

Views were also established on the UAT environment and will be required on the production
environment when it goes live.

TG4MSQL

TG4MSQL v1
14

3.3.1 View required in SQL*Server

The following SQL*Server tables need views:

Table Name View Name

CUSTOMERVERSIONREGULAROUTGOINGS CUSTOMERVERSIONREGULAROUTGO_V

The following table column names need views creating.

Table Name Column Name View Name View Column Name

APPLICATIONFACTFIND INTRODUCERLEVEL1INDUCEMENTVALUE APPLICATIONFACTFIND_V INTRODUCERLEVEL1INDUCEMENTVALU

APPLICATIONFACTFIND INTRODUCERLEVEL2INDUCEMENTVALUE APPLICATIONFACTFIND_V INTRODUCERLEVEL2INDUCEMENTVALU

APPLICATIONFACTFIND INTRODUCERLEVEL3INDUCEMENTVALUE APPLICATIONFACTFIND_V INTRODUCERLEVEL3INDUCEMENTVALU

BXAPPLICATIONBUREAU BX12_PCPERCENTHHSWITHCCJSLAST36M BXAPPLICATIONBUREAU BX12_PCPERHHSWITHCCJSLAST36M

HOMETRACKVALUATIONDETAILS VALUATIONRESULTSCONFIDENCELEVEL HOMETRACKVALUATIONDETAILS_V VALUATIONRESULTSCONFIDENCELEVE

HOMETRACKVALUATIONDETAILS VALUATIONRESULTSREFERENCENUMBER HOMETRACKVALUATIONDETAIL_V VALUATIONRESULTSREFERENCENO

HOMETRACKVALUATIONDETAILS VALUATIONRESULTSVALUATIONAMOUNT HOMETRACKVALUATIONDETAILS_V VALUATIONRESULTSVALUATIONAMT

INCOMESUMMARY TOTALLOANSLIABILITYANNUALOUTGOINGS INCOMESUMMARY_V TOTALLOANSLIABILITYANNUALOUT

INCOMESUMMARY TOTALLOANSLIABILITYOUTSTANDINGBALANCE INCOMESUMMARY_V TOTALLOANSLIABILITYOUTSTANDBAL

INCOMESUMMARY TOTALMORTGAGEOUTSTANDINGBALANCE INCOMESUMMARY_V TOTALMORTGAGEOUTSTANDINGBAL

INCOMESUMMARY TOTALREGULAROUTGOINGSANNUALOUTGOINGS INCOMESUMMARY_V TOTALREGULAROUTGOINGSANNUALOUT

INCOMESUMMARY UNDERWRITEROTHERINCOMEPERCENTAGE INCOMESUMMARY_V UNDERWRITEROTHERINCOMEPERC

INCOMESUMMARY UNDERWRITEROVERRIDEINCLUDEOTHERINC INCOMESUMMARY_V UNDERWRITEROVERRIDEINCLUDEOTH

MORTGAGESUBQUOTE CONFIRMEDCALCULATEDINCMULTIPLIERTYPE MORTGAGESUBQUOTE_V CONFIRMEDCALCULATEDINCMULTTYPE

TG4MSQL

TG4MSQL v1
15

The following SQL*Server tables need views due to issues with the NVARCHAR2 fields that are greater than 1000 characters.

Table Name View Name
MEMOPAD MEMOPAD_V

CASETASK CASETASK_V

CASETASKARCHIVE CASETASKARCHIVE_V

CREDITCHECKREASONCODE CREDITCHECKREASONCODE_V

RISKASSESSMENTRULEOVERRIDE RISKASSESSMENTRULEOVERRIDE_V

The following table column(s) within the tables are the problem cause.

Table Name Column Name
MEMOPAD MEMOENTRY

CASETASK ONTEXT

CASETASKARCHIVE CONTEXT

CREDITCHECKREASONCODE SMOVERRIDEREASON

RISKASSESSMENTRULEOVERRIDE RAOVERRIDEREASON

In each of the above tables multiple output columns have been generated, each appended with an identified P? where the ? represents the part number.

TG4MSQL

TG4MSQL v1
16

3.4 Known Issues
3.4.1 NVARCHAR type longer than 1000 characters

A problem was discovered that relates to the selection of fields from a SQL*Server table
containing a column whose size is greater than 1000 characters. i.e. NVARCHAR(4000).

Four tables were found to have this particular problem, MEMOPAD, CASETASK,
CASETASKARCHIVE and CREDITCHECKREASONCODE. Each of these four tables contained one
fields which was split down into four separate sub string fields with a created view. The select
upon the view returns all the appropriate details, and the 4 sub fields could then be re-combined
upon the Oracle database prior to being stored in a table.

The four views created are named:

MEMOPAD_V, CASETASK_V, CASETASKARCHIVE_V and CREDITCHECKREASONCODE_V.

The four subfields are named after the original column name appended with p1, p2, p3 or p4,
reflecting the specific part of the string data.

3.4.2 NVARCHAR padding

A feature has been discovered in that SQL*Server variables defined as NVARCHAR are being
mapped to NCHAR variables within the gateway. The NVARCHAR variable is a variable width
character type, whilst the NCHAR variable is a fixed width character type. The net effect of this
feature is that selection of the column from the SQL*Server table results in the variable being
padded to the field length with NULL characters. Oracle has accepted the problem and a BUG
report has been raised upon the subject.

Whilst a fix is awaited from Oracle there are two possible work solutions to get around the feature.

1. Implement a RTRIM function around each of the fields that are defined as NVARCHAR
upon SQL*Server for the tables of interest.

2. The second option would be to create a view upon each of the required tables upon
SQL*Server. A example using the casestage table and the stageid field is as follows:

create view gsc_v1 as select CAST(stageid AS VARCHAR) AS stageid from casestage;

A select from this view would return the variable of the correct length. In actual fact
the view would need to encompass all the desired columns within the table and not
just one field but the procedure is exactly the same.

Which every solution is employed, the end effect is the same with a character type translation
occurring within the gateway along with an implicit trim, or the trimming occurring upon the
Oracle RDBMS server. The deciding factor is likely to be the performance of the system where the
work is to be carried out, on the SQL*Server machine or the Oracle machine.

TG4MSQL

TG4MSQL v1
17

4 Warehouse Requirements
The exact schema that will be present upon the intended SQL*Server target database is not
currently known, however some tests have been carried out on a number of likely scenarios and
solutions are suggested below.

4.1 Long table names and long column names.
There is a restriction imposed by Oracle upon the length of table and column names to 30
characters. SQL*Server does not have this restriction.

 What does Oracle do when a SQL server table name is over 30 characters?

1. SELECT from a long table name.
SQL> select * from aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@test1msql.customer.uk;
select * from aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@test1msql.customer.uk

 *
ERROR at line 1:
ORA-00972: identifier is too long

 What does Oracle do when a SQL server column name is over 30 characters?

2. SELECT from a view on a long table name.
select * from v_aaa@test1msql.customer.uk
 *
ERROR at line 1:
ORA-28500: connection from ORACLE to a non-Oracle system returned this message:
[Transparent gateway for MSSQL][H00C] Attempt to access a column
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA with unsupported name length (greater than 30
characters).
ORA-02063: preceding 2 lines from TEST1MSQL
ORA-00604: error occurred at recursive SQL level 1
ORA-01013: user requested cancel of current operation

The solution to the above is to create an alias for the table and/or the column via the use of a view
located upon the SQL*Server database. Initially this has been done by Robin upon the test
SQL*Server instance located upon MACHINE1, but it is suggested (see below) that this can be
achieved via the gateway from the Oracle server using the DBMS_HS_PASSTHROUGH package.

4.2 SQL*Server data type conversion
SQL*Server data types are converted by the gateway into Oracle known databases. These are
illustrated below in Table 1- Data type conversions. In addition SQL*Server allows for mixed
(upper and lower) case characters for both table and column names. Whilst Oracle can also
handle this situation, the SQL syntax is complicated by the need to surround each name by quote
marks.

 What does Oracle convert the following SQL server data types to, and can data be copied.

SQL> desc v_aaa_v2@test1msql.customer.uk

 Name Null? Type
--- -------- ----------------------------
 CustomerID NOT NULL NCHAR(5)
 AAA NOT NULL NCHAR(40)
 ContactName NCHAR(30)
 ContactTitle NCHAR(30)
 Address NCHAR(60)
 City NCHAR(15)

mailto:v_aaa_v2@test1msql.customer.uk

TG4MSQL

TG4MSQL v1
18

 Region NCHAR(15)
 PostalCode NCHAR(10)
 Country NCHAR(15)
 Phone NCHAR(24)
 Fax NCHAR(24)
 Test1 LONG RAW
 Test2 NUMBER(3)
 Test3 DATE
 Test4 FLOAT(49)
 Test5 NCHAR(50)
 Test6 RAW(6)
 Test7 LONG
 Test8 NUMBER(18)
 Test9 NUMBER(19,4)
 Test10 NUMBER(5)

The columns Test1 to test10 correspond to:

Image, tinyint, datetime, float, nvarchar, binary, text, numeric, money, smallint.

Using a mixed case example:

SQL> desc v_aaa_v3@test1msql.customer.uk
 Name Null? Type
--- -------- ----------------------------
 CustomerID NOT NULL NCHAR(5)
 aAaAaAa NOT NULL NCHAR(40)
 ContactName NCHAR(30)
 ContactTitle NCHAR(30)
 Address NCHAR(60)
 City NCHAR(15)
 Region NCHAR(15)
 PostalCode NCHAR(10)
 Country NCHAR(15)
 Phone NCHAR(24)
 Fax NCHAR(24)
 Test1 LONG RAW
 Test2 NUMBER(3)
 Test3 DATE
 Test5 NCHAR(50)
 Test4 FLOAT(49)
 Test6 RAW(6)
 Test7 LONG
 Test8 NUMBER(18)
 Test9 NUMBER(19,4)
 Test10 NUMBER(5)

4.2.1 Create Table As Select (CTAS) Syntax

If one was to do a create table as… from sql server into Oracle. What does it do with column and
table names that are held in mixed case in sql server?

Simple CTAS

SQL> create table ctas1 as select * from v_aaa_v2@test1msql.customer.uk;
create table ctas1 as select * from v_aaa_v2@test1msql.customer.uk
 *
ERROR at line 1:
ORA-00997: illegal use of LONG datatype

If one tries the following, ignoring columns Test1 (LONG RAW) and Test7 (LONG)

create table ctas_v2 as
select
"CustomerID", AAA,
 "ContactName", "ContactTitle",
 "Address", "City", "Region", "PostalCode",
 "Country", "Phone", "Fax",
 "Test2", "Test3", "Test4", "Test5", "Test6", "Test8", "Test9", "Test10"
from v_aaa_v2@test1msql.customer.uk;

TG4MSQL

TG4MSQL v1
19

The table gets created successfully. The column names in the new table (CTAS_V2) are in mixed
case as a consequence of the ‘select’.

Oracle documentation states (Note:1022030.6):

LONG columns cannot be referenced when creating a table with query (CREATE
TABLE...AS SELECT..) or when inserting into a table(or view) with a query
(INSERT INTO ... SELECT...)
In addition one cannot use a ‘to_lob()’ function for the remote select.

A number of other options were tried including the SQLPLUS COPY command, and hit a number of
problems, including ORA-12154, ORA-01041 but the final one that prevented any further wok in
this area is ORA-28547 which seems to imply that the Transparent Gateway will not work with the
COPY command. Consequently at the current time there is not a simple way to copy over the
LONG & LONG RAW column data. Suggested alternative is to use a procedure within PL/SQL.

IF there is a view that does not contain the LONG or LONG RAW columns then a simple create
table as select works fine.

SQL> desc v_aaa_v4@test1msql
 Name Null? Type
--- -------- ----------------------------
 CustomerID NOT NULL NCHAR(5)
 aAaAaAa NOT NULL NCHAR(40)
 ContactName NCHAR(30)
 ContactTitle NCHAR(30)
 Address NCHAR(60)
 City NCHAR(15)
 Region NCHAR(15)
 PostalCode NCHAR(10)
 Country NCHAR(15)
 Phone NCHAR(24)
 Fax NCHAR(24)
 Test2 NUMBER(3)
 Test3 DATE
 Test5 NCHAR(50)
 Test4 FLOAT(49)
 Test6 RAW(6)
 Test8 NUMBER(18)
 Test9 NUMBER(19,4)
 Test10 NUMBER(5)

SQL> create table ctas_v2a as select * from v_aaa_v4@test1msql;

Table created.

SQL> desc ctas_v2a
 Name Null? Type
--- -------- ----------------------------
 CustomerID NOT NULL NCHAR(5)
 aAaAaAa NOT NULL NCHAR(40)
 ContactName NCHAR(30)
 ContactTitle NCHAR(30)
 Address NCHAR(60)
 City NCHAR(15)
 Region NCHAR(15)
 PostalCode NCHAR(10)
 Country NCHAR(15)
 Phone NCHAR(24)
 Fax NCHAR(24)
 Test2 NUMBER(3)
 Test3 DATE
 Test5 NCHAR(50)
 Test4 FLOAT(49)
 Test6 RAW(6)
 Test8 NUMBER(18)

TG4MSQL

TG4MSQL v1
20

 Test9 NUMBER(19,4)
 Test10 NUMBER(5)

4.3 Inline View Support
There does not appear to be any problems using inline views providing they are syntactically
correct for the SQL*Server gateway.

4.4 Data Type Conversion
The gateway converts Microsoft SQL Server data types to Oracle data types as follows:

Microsoft SQL
Server Oracle Comment

BINARY RAW -

BIT NUMBER(3) -

CHAR CHAR -

DATETIME DATE Fractional parts of a second are truncated

DECIMAL NUMBER(p[,s]) -

FLOAT FLOAT(49) -

IMAGE LONG RAW -

INTEGER NUMBER(10) NUMBER range is -2,147,483,647 to
2,147,483,647

MONEY NUMBER(19,4) -

NCHAR NCHAR -

NTEXT LONG -

NVARCHAR NCHAR -

NUMERIC NUMBER(p[,s]) -

REAL FLOAT(23) -

SMALL
DATETIME

DATE The value for seconds is returned as 0

SMALL MONEY NUMBER(10,4) -

SMALLINT NUMBER(5) NUMBER range is -32,767 to 32,767

TEXT LONG -

TIMESTAMP RAW -

TINYINT NUMBER(3) -

VARBINARY RAW -

VARCHAR VARCHAR2 -

TG4MSQL

TG4MSQL v1
21

Table 1- Data type conversions

4.4.1 Date variables

Microsoft SQL Server does not support implicit date conversions. Such conversions must be
explicit.

For example, the gateway issues an error for the following SELECT statement:

SELECT DATE_COL FROM TEST@MSQL

WHERE DATE_COL = "1-JAN-2004";

To avoid problems with implicit conversions, add explicit conversions, as in the following:

SELECT DATE_COL FROM TEST@MSQL

WHERE DATE_COL = TO_DATE("1-JAN-2004")

4.4.2 NCHAR variables

One issue discovered during testing involves the access of NCHAR columns within some of the
SQL*Server tables with a length greater than 1000 characters. This can be considered as
expected behaviour, in is described in Oracle Metalink Note 144808.1. This has nothing to do with
the Gateway, but as the Gateway will "dynamically" build Oracle data types depending of the SQL
Server data type, this will be made in evidence after the table creation step. Depending on the
database national character set, the number of BYTES allowed in a NCHAR or NVARCHAR will
change. Also, the Gateway mapping between SQL Server NCHAR/NVARCHAR and Oracle
NCHAR/NVARCHAR2 will require more space then the original definition indicates. For example, a
SQL Server nvarchar(1000) is mapped to a Oracle nvarchar2(2000). As, in AL16UTF16, the
maximum for nvarchar2 is 2000, it will not be possible to access a SQL Server nchar > 1000. As
can be guessed the NLS_NCHAR_CHARACTERSET for the PODS (and PODS9) database is
AL16UTF16, the default national character set.

The solution is to split the field into multiple parts accessed via a view, and to concatenate the
parts on the Oracle store, or access.

4.4.3 NVARCHAR padding

See section 3.4.2 for the possible solutions and issues relating to NVARCHAR padding within the
gateway.

4.4.4 Microsoft SQL Server IMAGE, TEXT and NTEXT Data Types

The Oracle Manual states:

The following restrictions apply when using IMAGE, TEXT and NTEXT data types:

 An unsupported SQL function cannot be used in a SQL statement that accesses a column
defined as Microsoft SQL Server data type IMAGE, TEXT or NTEXT.

 You cannot use SQL*Plus to select data from a column defined as Microsoft SQL Server data
type IMAGE, TEXT or NTEXT when the data is greater than 80 characters in length. Oracle
recommends using Pro*C or Oracle Call Interface to access such data in a Microsoft SQL
Server database.

 IMAGE, TEXT and NTEXT data types must be NULLABLE for INSERT or UPDATE to work.

 A table including an IMAGE, TEXT or NTEXT column must have a unique index defined on the
table or the table must have a separate column that serves as a primary key.

TG4MSQL

TG4MSQL v1
22

 IMAGE, TEXT and NTEXT data cannot be read through pass-through queries.

 If a SQL statement is accessing a table including an IMAGE, TEXT or NTEXT column, the
statement will be sent to Microsoft SQL Server as two separate statements. One statement to
access the IMAGE, TEXT or NTEXT column, and a second statement for the other columns in
the original statement. This will result in two connections to Microsoft SQL Server due to a
limitation in the Microsoft ODBC driver which only allows one statement for each connection,
which can cause a hang depending on the sequence of SQL statements. If this happens, try
issuing a commit and separating the statements in different transactions.

The only apparent solution to the handling of these LONG types seems to be to write a procedure
in Pro*C or to use an OCI connection.

From the 10.2 Heterogeneous Connectivity Administration Guide:

Piecewise LONG Data Type

Earlier versions of gateways had limited support for the LONG data type. LONG is an Oracle data
type that can be used to store up to 2 gigabytes (GB) of character data or raw data (LONG RAW).
These earlier versions restricted the amount of LONG data to 4 MB because they treated LONG data
as a single piece. This led to restrictions of memory and network bandwidth on the size of the
data that could be handled.

Current gateways have extended the functionality to support the full 2 GB of heterogeneous LONG
data. They handle the data piecewise between the agent and the Oracle server, thereby doing
away with the large memory and network bandwidth requirements.

The HS_LONG_PIECE_TRANSFER_SIZE Heterogeneous Services initialization parameter can be used
to set the size of the transferred pieces. For example, consider fetching 2 GB of LONG data from a
heterogeneous source. A smaller piece size means less memory requirement, but more round-
trips to fetch all the data. A larger piece size means fewer round-trips, but more of a memory
requirement to store the intermediate pieces internally. Thus the initialization parameter can be
used to tune a system for the best performance, that is, for the best trade off between round-trips
and memory requirements. If the initialization parameter is not set, the system defaults to a
piece size of 64 KB.

Note: Do not confuse this feature with piecewise operations on LONG data on the client side.
Piecewise fetch and insert operations on the client side did work with the earlier versions of the
gateways, and continue to do so. The only difference on the client side is that, where earlier
versions of the gateways were able to fetch a maximum of 4 megabytes (MB) of LONG data, now
they can fetch the entire 2 GB of LONG data. This is a significant improvement, considering that 4
MB is only 0.2% of the data type's full capacity.

5 Workarounds
Most of the examples make reference to the link test2msql. This link is created as described
above, and is just another database link using the gateway.

5.1 Simple select using DBMS_HS_PASSTHROUGH
The following shows the use of DBMS_HS_PASSTHROUGH to obtain values back from the gateway.
The variable type fetched into needs to be the same type as returned by the gateway. i.e. If the
gateway returns the field NCHAR2 then the local variable should be NVARCHAR2).

TG4MSQL

TG4MSQL v1
23

declare
 val VARCHAR2(100);
 nval nvarchar2(100);
 id integer;
 c INTEGER;
 nr INTEGER;

BEGIN
 c:= DBMS_HS_PASSTHROUGH.OPEN_CURSOR@test2msql;
 DBMS_HS_PASSTHROUGH.PARSE@test2msql(c,
 'select name, id from sysobjects');
 LOOP
 nr := DBMS_HS_PASSTHROUGH.FETCH_ROW@test2msql(c);
 DBMS_HS_PASSTHROUGH.GET_VALUE@test2msql(c,1,nval);
 DBMS_HS_PASSTHROUGH.GET_VALUE@test2msql(c,2,id);
 DBMS_OUTPUT.PUT_LINE(nval||' '||to_char(id));
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND
 THEN DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@test2msql(c);
END;
/

5.2 Select using cursor for loop
The variable “Test7” is a LONG variable as determined by the MSQL gateway. The following
illustrates the saving of the LONG variable into a table. [The table is a simple single LONG
column.]

declare
 cursor c1 is
 select "Test7" test7 from v_aaa_v2@test2msql;

begin
 for r1 in c1 loop
 dbms_output.put_line('Yes '||substr(to_char(r1.test7),1,10));

 insert into gsc1 (l1)
 values (r1.test7);
 commit;
 end loop;
 dbms_output.put_line('Finished');
exception
 when no_data_found then
 dbms_output.put_line('No data');
end;
/

5.3 Creating a SQL*Server view
The following script was used to create a view upon the SQL*Server database. The connected
user (oracle_con) had to have been granted the create view privilege upon the database before
this would work successfully.

declare
 c INTEGER;
BEGIN
 c:= DBMS_HS_PASSTHROUGH.execute_immediate@test2msql
 ('create view gsc_test (ALIASCOL) as
 select AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA from
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa');
END;

TG4MSQL

TG4MSQL v1
24

/

The alternative syntax for creating a view with aliased names should also work:

CREATE VIEW GSC_TEST AS
SELECT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AS ALIASCOL
FROM AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

TG4MSQL

TG4MSQL v1
25

6 GATEWAY Package
The GATEWAY package has been written to simplify the creation of views upon SQL*Server which
are required to enable Oracle to access tables, or tables with column names that exceed 30
characters.

The package makes use of the DBMS_HS_PASSTHROUGH package that conceptually resides on
the Microsoft SQL*Server gateway. In addition it utilises the views upon the SQL*Server objects.

Procedure Name Parameter Name Parameter Type Comments

Debugging and Versioning Routines

MAJOR_VERSION OUT NUMBERPROCEDURE
PACKAGE_VERSION

MINOR_VERSION OUT NUMBER

PROCEDURE set_dbg

PROCEDURE
set_nodbg

FUNCTION debugging RETURN BOOLEAN

Internal Routines

sql_text IN VARCHAR2PROCEDURE
run_on_sqlserver

server IN VARCHAR2 DEFAULT
‘OMEGA_SIT1’

Externally exposed.
See Note 1 below.

PROCEDURE
run_on_sqlserver_sit1

sql_text IN VARCHAR2 Calls main
run_on_sqlserver
procedure. Internal
only

PROCEDURE
run_on_sqlserver_sit2

sql_text IN VARCHAR2 Calls main
run_on_sqlserver
procedure. Internal
only.

PROCEDURE
run_on_sqlserver_uat

sql_text IN VARCHAR2 Calls main
run_on_sqlserver
procedure. Internal
only.

PROCEDURE
run_on_sqlserver_prod

sql_text IN VARCHAR2 Calls main
run_on_sqlserver
procedure. Internal
only.

p_viewname IN VARCHAR2PROCEDURE
drop_view

server IN VARCHAR2 DEFAULT
‘OMEGA_SIT1’

Drops specified views.
Internal only. See
Note 1 below.

Main Routines

PROCEDURE
create_sit_views

N/A N/A Creates views on both
OMEGA_SIT1 and
OMEGA_SIT2
instance. Calls
create_views1, 2 3
etc.

PROCEDURE
create_views_sit1

N/A N/A Creates views on
OMEGA_SIT1
instance. Calls

TG4MSQL

TG4MSQL v1
26

Procedure Name Parameter Name Parameter Type Comments
create_views1, 2 3
etc.

PROCEDURE
create_views_sit2

N/A N/A Creates views on
OMEGA_SIT2
instance. Calls
create_views1, 2 3
etc.

PROCEDURE
create_views_uat

N/A N/A Creates views on
OMEGA_UAT instance.
Calls create_views1, 2
3 etc.

PROCEDURE
create_views_prod

N/A N/A Creates views on
OMEGA_PROD
instance. Calls
create_views1, 2 3
etc. NOTE: This is
not active as of 9th

Jan 2006.
PROCEDURE
create_views1

sit IN VARCHAR2 Creates views on
specified SQL Server
instance. These views
are upon the tables
that contain
NVARCHAR2 columns
greater than 1000.
See Note 1 below.

PROCEDURE
create_views2

sit IN VARCHAR2 Creates views on
specified SQL Server
instance. These views
are upon the tables
that contain
NVARCHAR2 columns
greater than 1000.
See Note 1 below.

PROCEDURE
create_views3

sit IN VARCHAR2 Creates views on
specified SQL Server
instance. Currently
only one view is
involved. See Note 1
below.

PROCEDURE
set_tg_mode

mode_in IN VARCHAR2 [Must be
one of
COMMIT_CONFIRM,
READ_ONLY,
SINGLE_SITE or
TWO_PHASE_COMMIT.]

Sets transparent
gateway mode.
[Effectively on effects
COMMIT_CONFIRM
mode which is default
anyway.]

Table 2- GATEWAY package procedures

Note:

1 The server (or sit) parameter when specified is usually the name of the Oracle database link to
the SQL Server instance. Currently four instances are known, with three being active,
OMEGA_SIT1, OMEGA_SIT2, and OMEGA_UAT are live, and OMEGA_PROD is known. As a
convenience the abbreviations SIT1, SIT2, UAT or PROD are acceptable.

It was originally intended to implement a generic naming of the created views, but upon inspection
of the schema a more specific creation was decided upon. For that reason the procedures
create_views, create_views1, create_views2 and create_views3 were written and comprise the

TG4MSQL

TG4MSQL v1
27

actual code required to generate the specific views required. A simple SQL script was used to
generate the basic code required, which was then implemented within the procedure.

set verify off
set pagesize 0
set trimspool on
set heading off
set feedback off
accept tab prompt 'Table name: '
spool &spoolname
select 'create view '||table_name||'_V ('||
 column_name||','
from dba_tab_columns@omega_sit2
where table_name = upper('&tab')
and column_id = 1;
select column_name||','
from dba_tab_columns@omega_sit2
where table_name = upper('&&tab')
and column_id > 1
order by column_id;
select ') as select '||column_name||','
from dba_tab_columns@omega_sit2
where table_name = upper('&&tab')
and column_id = 1;
select column_name||','
from dba_tab_columns@omega_sit2
where table_name = upper('&&tab')
and column_id > 1
order by column_id;
select 'from '||table_name
from dba_tables@omega_sit2
where table_name = upper('&&tab');
spool off
set verify on
set feedback on
set heading on
set pagesize 10

Figure 3 - View Creation Script

NOTES:

 A problem was encountered when writing the GATEWAY package such that it was not possible
to use a cursor with an input variable accessing tables upon the SQL*Server node. This
problem is suspected to be caused by something in the package, as a simple stand alone
procedure works successfully. To get around the problem, the package makes use of
DBMS_SQL to parse and execute code to access tables upon the SQL*Server node.

 At the current time, there does not appear to be a way in which the name of the database link
(pointing to the SQL*Server gateway) can be set as a variable in one location. This also
implies the passing of the link name into a procedure. The complication is involved with the
DBMS_HS_PASSTHROUGH call.

 No attempt has been made to use an EXECUTE IMMEDIATE statement form, which is expected
to resolve the need for multiple ‘duplicate’ procedures for multiple links.

 The entry point create_views_prod is coded but will generate an error until such time as the
database links are established and the code is modified to remove the comment markers in
two specific places in the code, and remove the error alert code. Around lines 164 and 292 in
the package body.

TG4MSQL

TG4MSQL v1
28

6.1 Package error codes
There are a few error codes generated by the package which are as follows:

Error Code Description

20001 Unexpected exception raised. This is a generic error message, which will be
displayed along with the corresponding Oracle error message generated by
the system. This problem is likely to be caused by an underlying database,
or link problem rather than the Gateway package itself.

20002 Unknown gateway mode specified. This error is generated if an invalid
mode is specified for the Transparent gateway. Acceptable values are as
follows: COMMIT_CONFIRM, READ_ONLY, SINGLE_SITE or
TWO_PHASE_COMMIT. See section 2.5.2 for more details.

20003 Unused.

20004 Invalid (or unknown) server (link) name specified. The specified database
link name is not known, or is invalid. Currently there are four known links
established, which are OMEGA_SIT1, OMEGA_SIT2, OMEGA_UAT and
OMEGA_PROD although aliases SIT1, SIT2, UAT and PROD are acceptable as
special cases. See note re OMEGA_PROD above.

20005 This error is raised when code that is not yet implemented is invoked
through the entry points.

TG4MSQL

TG4MSQL v1
29

7 Tuning Considerations
There are no real parameters to tune generic connectivity or the open gateways. Everything that
follows is to demonstrate the behaviour of heterogeneous services, to explain the working
mechanism and what can be done to improve the performance.

Background information: HS connects from an Oracle database to a foreign data source and
fetches records. The amount of the fetched records reflects the time needed to transfer them. The
simplest way to improve performance is to reduce the amount of fetched data.

RULE 1:

AVOID select * from remote table

Fetching all records from the remote database can sometimes occur without wanting to fetch all
the records. The cause is called POST PROCESSING.

The Transparent Gateways tell the Oracle database during connect time which functions and
operators they support. If the remote database does not support this function or operator, then
the Oracle database must execute the function or operand. But to do this ALL records from the
remote database must be fetched and processed locally in the Oracle database.

RULE 2:

Pay attention to which functions/operands are supported by HS.

Unsupported functions are post processed!

Some of the gateways such as the IBM gateways support explain plan. With this feature you're
able to see the statements passed and processed. But this feature is not yet implemented in the
generic connectivity or open gateways or the Microsoft SQL*Server gateway. So the only way to
figure out what statements are passed between the Oracle database and the remote database is to
verify the HS traces.

One option to solve this issue is to CREATE VIEWS.

With access to the remote database:

It is possible to create a view at the remote database that pre selects the records. HS now
performs its own query only to this view and processes only the pre selected records.

With no access to the remote database:

The whole operation could be used in conjunction with DBMS_HS_PASSTHROUGH
packages. DBMS_HS_PASSTHROUGH allows the creation of views at the remote database
as well as the sending of select statements as they are to the foreign database without
being pre processed.

Another option is to use the COST-BASED optimizer.

The cost-based optimizer uses indexes on remote tables and considers more execution plans then
the rule based optimizer.

The real performance tuning is to reduce the amount of data fetched by the HS agent.

However there are a few parameters that adapt the interface and might improve performance as
well.

By default, an agent fetches data from the non-Oracle system until it has enough data retrieved to
send back to the HS related part in the Oracle database. The agent reblocks the data between the
agent and the Oracle database server in sizes defined by the value of HS_RPC_FETCH_SIZE.

TG4MSQL

TG4MSQL v1
30

The other part is the transfer of the foreign database related interface like odbc and the agent.
This transfer can be manipulated by setting the parameter

HS_FDS_FETCH_ROWS.

The default value is 20, but it makes sense to increase this value by adapting it to the fetched
rows of the remote database.

While some ODBC drivers initialize the SQL_FETCH_ROWS to 100 the HS_FDS_FETCH_ROWS
should be set to 100 or even to n*SQL_FETCH_ROWS.

For example, assume that you set HS_RPC_FETCH_SIZE to 64K and HS_FDS_FETCH_ROWS to
100 rows. Assume that each row is approximately 600 bytes in size, so that the 100 rows are
approximately 60K.

The agent starts fetching 100 rows from the non-Oracle system.

Because there is only 60K bytes of data in the agent, the agent does not send the data to the
Oracle database server. Instead, the agent fetches the next 100 rows from the non-Oracle system.

Now the agent is filled with 120K of data and the first 64K can be sent to the Oracle database
server. There is 56K of data left in the agent. The agent fetches another 100 rows from the non-
Oracle system before sending the next 64K of data to the Oracle database server.

From the description above it looks like the agent is a bottle neck. It only sends data after a
buffer is filled. So a better idea would be to STREAM the data.

If the HS agent supports array fetching (please check out the documentation for a specific type of
agent) the blocking can be switched of. Set the initialization parameter
HS_RPC_FETCH_REBLOCKING to OFF.

According to the sample from above, this means that the first 100 rows are immediately sent to
the Oracle server.

So in theory a performance improvement will take place by setting HS_RPC_FETCH_REBLOCKING
to OFF and HS_FDS_FETCH_ROWS to a value of n*SQL_FETCH_ROWS.

KEEP IN MIND:

All these parameters manipulate the DATA TRANSFER. While each fetched record depends on
networking capacity, on CPU usage, the best tuning mechanism is still to reduce the amount of
transferred data.

And this can be achieved by CREATING VIEWS to pre-select the fetched records as described
earlier.

TG4MSQL

A -
TG4MSQL v1

1

A. Gateway Specifications
A.1 Supported Views and Tables

The gateway supports the following views and tables:

ALL_CATALOG ALL_COL_COMMENTS

ALL_CONS_COLUMNS ALL_CONSTRAINTS

ALL_IND_COLUMNS ALL_INDEXES

ALL_OBJECTS ALL_TAB_COLUMNS

ALL_TAB_COMMENTS ALL_TABLES

ALL_USERS ALL_VIEWS

DBA_CATALOG DBA_COL_COMMENTS

DBA_OBJECTS DBA_TAB_COLUMNS

DBA_TAB_COMMENTS DBA_TABLES

DICT_COLUMNS DICTIONARY

DUAL TABLE_PRIVILEGES

USER_CATALOG USER_COL_COMMENTS

USER_CONS_COLUMNS USER_CONSTRAINTS

USER_IND_COLUMNS USER_INDEXES

USER_OBJECTS USER_TAB_COLUMNS

USER_TAB_COMMENTS USER_TABLES

USER_USER USER_VIEWS

A.2 Data Dictionary Mapping

The tables in this section list Oracle data dictionary view names and the equivalent Microsoft SQL
Server system tables used. A plus sign (+) indicates that a join operation is involved.

View Name Microsoft SQL Server System Table Name

ALL_CATALOG sysusers + sysobjects

ALL_COL_COMMENTS sysusers+sysobjects+syscolumns

ALL_CONS_COLUMNS sp_pkeys + sp_fkeys

ALL_CONSTRAINTS sysusers + sysobjects + sysindexes + sysconstraints + sysreferences

ALL_IND_COLUMNS sysusers + sysindexes + syscolumns

TG4MSQL

A -
TG4MSQL v1

2

ALL_INDEXES sysusers + sysindexes + sysobjects

ALL_OBJECTS sysusers + sysobjects + sysindexes

ALL_TAB_COLUMNS sysusers + sysobjects + syscolumns

ALL_TAB_COMMENTS sysusers + sysobjects

ALL_TABLES sysusers + sysobjects

ALL_USERS sysusers

ALL_VIEWS sysusers + sysobjects + syscomments

DBA_CATALOG sysusers + sysobjects

DBA_COL_COMMENTS sysusers + sysobjects + syscolumns

DBA_OBJECTS sysusers + sysobjects + sysindexes

DBA_TABLES sysusers + sysobjects

DBA_TAB_COLUMNS sysusers + sysobjects + syscolumns

DBA_TAB_COMMENTS sysusers + sysobjects

DICT_COLUMNS sysobjects + syscolumns

DICTIONARY sysobjects

DUAL sysusers

TABLE_PRIVILEGES sysprotects + sysusers + sysobjects

USER_CATALOG sysusers + sysobjects

USER_COL_COMMENTS sysusers + sysobjects + syscolumns

USER_CONS_COLUMNS sp_pkeys + sp_fkeys

USER_CONSTRAINTS sysusers + sysobjects + sysindexes + sysconstraints + sysreferences

USER_IND_COLUMNS sysusers + sysindexes + syscolumns

USER_INDEXES sysusers + sysindexes + sysobjects

USER_OBJECTS sysusers + sysobjects + sysindexes

USER_TAB_COLUMNS sysusers + sysobjects + syscolumns

USER_TAB_COMMENTS sysusers + sysobjects

USER_TABLES sysusers + sysobjects

USER_USERS sysusers

USER_VIEWS sysusers + sysobjects + syscomments

TG4MSQL

A -
TG4MSQL v1

3

A.3 Useful SQL Server view

One useful view has been created upon the Oracle database to view the ‘true’ table definitions
upon the SQL Server database. Currently only created on the SIT1 instance the syntax for the
view is as shown below:

CREATE OR REPLACE VIEW OMEGA_TAB_COLUMNS
(TABLE_NAME, COLUMN_NAME, DATATYPE, COLUMN_ORDER, NULLABLE,
 "prec", "scale")
AS
SELECT syso."name" table_name
 ,sysc."name" column_name
 ,syst."name" datatype

--,syst2."name" datatype2
 ,sysc."colid" column_order
 ,decode(sysc."isnullable",0,'NOT NULL','NULL') nullable
 ,sysc."prec"
 ,sysc."scale"
FROM "syscolumns"@omega_sit1 sysc
 ,"sysobjects"@omega_sit1 syso
 ,"systypes"@omega_sit1 syst

--,"systypes"@omega_sit1 syst2
WHERE syso."type" = 'U' AND
 sysc."id" = syso."id" AND
 syst."xusertype" = sysc."xusertype"

	Introduction
	Installation of SQL*Server Transparent gateway
	Release Version specifics
	Oracle V9.2.0
	Oracle TG4MSQL V10.1.0.2
	Oracle TG4MSQL V10.2.1

	Oracle Database dictionary table requirements
	TNSNAMES entries
	Common Errors

	Listener.ora
	Common Errors

	Gateway Configuration
	SQL*Server Oracle connection account
	Gateway transaction modes
	Configuring for Two-Phase Commit
	Task 1: Create a Recovery Account and Password
	Task 2: Create the Transaction Log Table

	Specifying an Owner

	Testing connectivity
	Common Errors

	Common Errors and Solutions
	Errors encountered with UAT setup
	Oracle Connectivity

	Customer setup
	Oracle databases
	PODS9
	PODS

	UTILS schema
	Views
	View required in SQL*Server

	Known Issues
	NVARCHAR type longer than 1000 characters
	NVARCHAR padding

	Warehouse Requirements
	Long table names and long column names.
	SQL*Server data type conversion
	Create Table As Select (CTAS) Syntax

	Inline View Support
	Data Type Conversion
	Date variables
	NCHAR variables
	NVARCHAR padding
	Microsoft SQL Server IMAGE, TEXT and NTEXT Data Types

	Workarounds
	Simple select using DBMS_HS_PASSTHROUGH
	Select using cursor for loop
	Creating a SQL*Server view

	GATEWAY Package
	Package error codes

	Tuning Considerations

