
Streams Setup

Streams setup

Streams Setup

Author: G S Chapman

Date: 24th October 2008

Version: 1.0

Location of Document:

Macrotone Consulting Ltd
Streams Setup

Streams setup
i

DOCUMENT HISTORY

Version Date Changed By: Remarks

1.0 24/10/08 G S Chapman Initial version

DOCUMENT DISTRIBUTION

Copy No Name Role Organisation

Macrotone Consulting Ltd
Streams Setup

ii
Streams Setup

DOCUMENT REFERENCES
Document Name Originator Part Number Version Date

Oracle Streams Performance and Troubleshooting Best Practices:
Oracle Database 10g Release 2 MAA white paper.

Oracle Corporation White Paper

Oracle Metalink Technical Note (strmmon) Oracle Corporation Note: 290605.1

Oracle Corporation Streams Concepts and Administration Manual Oracle Corporation B14229

Oracle Corporation Streams Replication Administrators Guide Oracle Corporation B14228

Oracle Corporation PL-SQL Packages and Types Reference
Manual

Oracle Corporation B14258

Oracle Corporation Database Concepts Manual. Oracle Corporation B14220

Oracle Corporation Data Warehousing Guide Oracle Corporation B14223

Oracle Streams Performance and Troubleshooting Best Practices:
Oracle Database 10g Release 2 MAA white paper.

Oracle Corporation White Paper

Macrotone Consulting Ltd
Streams Setup

iii
Streams Setup

TABLE OF CONTENTS
1 STREAMS DESCRIPTION ... 6
1.1 Streams Data Capture... 6
1.2 Logical Change Records (LCRs) .. 7
1.3 OLS implication... 8
1.4 Solution Overview ... 8
1.5 Change table definition.. 9
2 CONFIGURATION .. 10
2.1 Streams Administrator... 10
2.2 Streams Initialisation Parameters ... 10
2.3 Supplementary Logging .. 12
2.4 Queues .. 13
2.4.1 Source Database Queue... 13
2.4.2 Target Database Queue.. 13
2.4.3 Queues in a RAC configuration... 13
2.5 Propagation ... 14
2.5.1 Database Link ... 14
2.5.2 Table Propagation Rule... 14
2.5.3 Schema Propagation Rule .. 14
2.5.4 Propagation settings.. 15
2.6 Capture Process.. 16
2.6.1 Table Capture Rule ... 16
2.7 Default Apply Process ... 17
2.7.1 Table Apply Rule ... 17
2.7.2 Schema Apply Rule... 18
2.8 Change Table Apply Process.. 19
2.9 Instantiation ... 22
2.9.1 Use of network datapump ... 23
2.9.2 Object instantiation.. 23
2.9.3 Table instantiation call:.. 23
2.9.4 Schema instantiation call... 24
2.10 Startup ... 24
2.10.1 Start the Apply... 24
2.10.2 Start the Capture ... 24
2.10.3 Starting order... 24
2.11 Post Configuration Tasks .. 25
2.11.1 Set Capture Checkpoint Retention Time Parameter... 25
2.11.2 Set apply parallelism to 4. ... 25
2.12 Error Handling ... 25
2.13 Housekeeping ... 26
2.13.1 Stopping the Replication. .. 26
2.13.2 Removing Streams replication completely. ... 26
3 MONITORING ... 28
3.1 Strmmon Utility .. 28
3.2 DDL Replication .. 30
3.3 Propagation ... 30
3.4 Source Queue Growth .. 30
3.5 Useful tables and views .. 30
3.6 Monitoring Scripts .. 34
3.7 Grid Control Monitoring... 35
3.7.1 User Defined Metrics... 36
3.8 Streams Commander (OSC) ... 36
4 AUTOMATING THE SETUP... 37
5 ADDITIONAL NOTES: ... 40
5.1 Database Links .. 40
5.2 Problems with creating capture process. .. 40
5.3 Database Recovery Scenarios.. 41

Macrotone Consulting Ltd
Streams Setup

iv
Streams Setup

5.4 Queue Ordering... 41
5.5 Heartbeat Table... 41
5.5.1 To implement a heartbeat table:... 42
5.6 Replicating tables with extra columns ... 42
5.7 Adding a Global Rule to exclude certain DDL statements .. 44
5.8 Excluding Columns in Capture.. 44
A1 Streams Utility Package.. 46
A2 Generation Scripts .. 48
A3 Usage of written scripts.. 50
A4 Update release changes ... 51
A5 Adding a few tables to the replication. ... 52
A6 Handling Apply Spill ... 53
A6.1 Apply Spill (10.2) ... 53
A6.2 Purging Apply Spill .. 53
A7 Problems restarting Capture process... 55
A8 Known problems when removing Streams configuration .. 57
A9 Using Stream Tags.. 58
A9.1 Setting the Tag Values Generated by the Current Session .. 58
A9.2 Getting the Tag Value for the Current Session... 58
A9.3 Example using Tags ... 58
A10 Example of dropping columns and streams in a single database 60
A11 Tracing Streams .. 64
A12 Deploying Streams in a High Availability Architecture. .. 65
A12.1 Procedure to recover from a Streams destination failure .. 65
A12.2 Perform the following steps to recover a Streams destinations failure. .. 66
A13 Procedure to recover from a Streams SOURCE FAILURE.. 70
A13.1 Perform the following steps to recover a Streams source failure. .. 70

TABLE OF FIGURES
Figure 1 - Information flow in a replicated environment ...7

TABLES
Table 1 - Change table additional column specifications...9
Table 2 - Streams Initialisation Parameters ...12
Table 3 - Strmmon utility parameters ...29
Table 4 - Dynamic Streams Views ..32
Table 5 - Streams Monitorinq SQL scripts ...34
Table 6 - STRMUTIL_PKG procedures. ..47
Table 7 - Generation Scripts ..49

Macrotone Consulting Ltd
Streams Setup

v
Streams Setup

PURPOSE OF DOCUMENT
The purpose of this document is to:

 Describe at a detailed level the implementation of streams replication

 Define how the components are integrated

 Detail the setup procedures

It is assumed that the reader of this document understands the principles behind being an Oracle
DBA.

Macrotone Consulting Ltd
Streams Setup

6
Streams Setup

1 STREAMS DESCRIPTION
There are a number of requirements to make data available between different
systems. The method to perform this task is called replication and can be
described as the process of sharing database objects and data between multiple
databases. To maintain replicated database objects and data at multiple
databases, a change to one of these database objects at a database is shared
with the other databases. In this way, the database objects and data are kept
synchronized at all of the databases in the replication environment. The
database where a change originates is called the master (or source) database,
and a database where a change is shared is called a destination database.

There are two specific requirements:

 Replication: Simple copy of data between two systems

 Change Capture: The capture of changes made such that they may be
used for another purpose.

The method used will be based upon Oracle Streams technology. A streams
capture process will be used upon the source system, which will then be
propagated to a destination system. On the destination system, an apply process
will be used which will 'replicate' the changes to the base tables, and/or where
required create the change tables.

A Streams environment can be configured to replicates changes for an entire
source database, certain schemas in the source database, or subsets of certain
tables in the source database. It is also possible to configure a Streams
environment that maintains DML changes, DDL changes, or both. The database
objects configured for replication can also be in multiple tablespaces in the
source database.

1.1 Streams Data Capture
Streams Data Capture permits the replication of a DML or DDL change upon
Oracle database tables in three steps:

1. A capture process or an application creates one or more logical change
records (LCRs) and enqueues them into a queue. An LCR is a message
with a specific format that describes a database change. A capture
process reformats changes captured from the redo log into LCRs, and
applications can construct LCRs. If the change was a data manipulation
language (DML) operation, then each LCR encapsulates a row change
resulting from the DML operation to a shared table at the source
database. If the change was a data definition language (DDL) operation,
then an LCR encapsulates the DDL change that was made to a shared
database object at a source database.

2. A propagation process moves the staged LCR to another queue, which
usually resides in a database that is separate from the database where
the LCR was captured. An LCR can be propagated to a number of
queues before it arrives at a destination database.

3. At a destination database, an apply process consumes the change by
applying the LCR to the shared database object. An apply process can
dequeue the LCR and apply it directly, or an apply process can dequeue
the LCR and send it to an apply handler. In a Streams replication
environment, an apply handler performs customized processing of the
LCR and then applies the LCR to the shared database object.

Streams technology also enables the apply process to be modified so that a
change data table can be created for a 'few' selected objects and a simple
application of all other changes to the destination objects. This is achieved by the
use of Rules. A rule is a database object that enables a client to perform an
action when an event occurs and a condition is satisfied. Rules are evaluated by

Macrotone Consulting Ltd
Streams Setup

7
Streams Setup

a rules engine, which is a built-in part of Oracle. Each of the following
mechanisms is a client of the rules engine:

 Capture process

 Propagation

 Apply process

The behaviour of each of these Streams clients is controlled using rules. A rule
set contains a collection of rules, and you can associate a positive and a
negative rule set with a Streams client. In a replication environment, a Streams
client performs an action if an LCR satisfies its rule sets. In general, a change
satisfies the rule sets for a Streams client if no rules in the negative rule set
evaluate to true for the LCR, and at least one rule in the positive rule set
evaluates to true for the LCR. If a Streams client is associated with both a
positive and negative rule set, then the negative rule set is always evaluated first.

Step 1 and Step 3 are required, but Step 2 is optional because, in some cases,
an application can enqueue an LCR directly into a queue at a destination
database. In addition, in a heterogeneous replication environment in which an
Oracle database shares information with a non-Oracle database, an apply
process can apply changes directly to a non-Oracle database without
propagating LCRs.

Figure 1 - Information flow in a replicated environment
One advantage that Oracle Streams provides is that it allows one source and
multiple destinations. This situation is a Streams environment in which one
database is the primary database, and this primary database shares data with
several secondary databases. The secondary databases optionally may share
data only with the primary database. The secondary databases do not share data
directly with each other, but, instead, optionally can share data indirectly with
each other through the primary database. This type of environment is sometimes
called a "hub and spoke" environment, with the primary database being the hub
and the secondary databases being the spokes.

On the destination system a apply process would run, consuming the messages
from the queue and in most cases applying it to a destination table. It is possible
to have multiple apply processes, for example one might update a ‘copy’ of the
source table and the second could be to populate change tables for a selected
number of tables.

In the circumstance of the second case it would be the responsibility of the ETL
process that would use the change tables to ensure that data integrity is
preserved. (Taking account of the SCN numbers on the change records ensuring
they are applied in the correct order.)

The Streams information flow:

The Oracle Streams architecture consists of three basic elements or processes
as represented in the above diagram:

 Capture

 Staging

 Apply or Consume

1.2 Logical Change Records (LCRs)
The capture process extracts the DML/DDL statements evaluated by the rules
engine from the redo log and formats them into events also called Logical

Macrotone Consulting Ltd
Streams Setup

8
Streams Setup

Changed Records. These LCRs will then be placed in the queue or the staging
area.

Oracle Streams presents us with control over what information needs to be
shared, how it is propagated and to which subscriber (databases). This control
can be exercised by tagging each LCR with a tag that identifies in which
database the change originated (whether a local database or a remote database,
especially in an N-tiered database network), for tracking the information flow or
for specifying the set of destination databases that can use the information.

The capture process formats two types of LCRs, the DDL LCR and the row LCR.

The row LCR describes changes made to a single row of a table modified with a
single DML statement. Thus, a single DML statement that updates 100 rows in
the table will generate a 100 row LCR and a single transaction containing (say)
two DML statements, each updating 100 rows will generate 200 LCRs (100 x 2
LCRs).

The DDL LCR, on the other hand, describes the changes in the database objects
(such as a DDL statement issued to create, alter or drop a database object).

The following figure shows the Oracle Streams architecture.

Figure 2 - Streams Architecture

/* DML updates only 1 row */
UPDATE employee
SETjob='VP'
WHERE employee_id=11234;
/* DML updates (say) 10 rows
*/
UPDATE employee
SET comm=0.05*salary
WHERE
department='SALES';

/* DML updates only 1 row */
UPDATE employee
SETjob='VP'
WHERE
employee_id=11234;
/* DML updates (say) 10
rows */
UPDATE employee
SET comm=0.05*salary
WHERE
department='SALES';

1.3 OLS implication
The implementation of OLS within the schemas will not impact the replication
design. The 'users' who perform the capture and application of the changes are
privileged users within the database. These specific user accounts would only be
used for the purpose of the 'replication' and for no other purpose.

1.4 Solution Overview
The main objectives are:

 To minimise the impact on the master (source) databases and data
fabric.

 To only make destination data changes where data has genuinely
changed since the last update.

Macrotone Consulting Ltd
Streams Setup

9
Streams Setup

1.5 Change table definition
The change tables that are populated as a result of the apply procedure defined
below needs to be defined as part of the set up of the mechanism. A generic
format has been defined which will consist of the existing columns in the source
table together with the following fixed columns defined in the table below.

Column Name Format Comments

OPERATIONS$ VARCHAR2(2) Operation being performed, i.e. 1 - Insert, D -
Delete, UO - Update old values, UN - Update new
values.

CSCN$ NUMBER System change number on source system.

RSID$ NUMBER Sequential count for statement with a transaction
set. Starts at 1 and increases by 1 for each
additional statement.

COMMIT_TIMESTAMP$ DATE Date when the change was made upon the source
database.

SOURCE_SYSTEM$ VARCHAR2(80) The name of the source system.

Table 1 - Change table additional column specifications

Macrotone Consulting Ltd
Streams Setup

10
Streams Setup

2 CONFIGURATION
These instructions provide details of how to set up and use Streams based
replication between databases. The information supplied covers a means of
creating a 'Change Data Capture' table upon the destination database, which can
be used by ETL processes to record changes made upon the base tables.

2.1 Streams Administrator
It is recommended that a separate user be configured to manage the Streams
environment. The standard name used is typically STRMADMIN. This must be a
limited access account as it has DBA privileges (note that DBA is only required to
support CREATE / ALTER Capture and Apply processes). In addition, it is good
practice to create a separate tablespace for the STRMADMIN user (Minimum
size 50M). This specific task would be performed by a database administrator.

CREATE TABLESPACE STREAMS_TS LOGGING
EXTENT MANAGEMENT LOCAL AUTOALLOCATE

SEGMENT SPACE MANAGEMENT AUTO
DATAFILE '+XXXX' SIZE 50M

AUTOEXTEND ON NEXT 50M MAXSIZE UNLIMITED;

A STRMADMIN user must be created on each database participating in the
Streams environment.

Sample script:

CREATE USER strmadmin IDENTIFIED BY password
DEFAULT TABLESPACE streams_ts QUOTA UNLIMITED ON streams_ts;
GRANT dba TO strmadmin;
BEGIN

dbms_streams_auth. grant_admin_privilege (
grantee => 'STRMADMIN',
grant_privileges => TRUE);

END;
/

The strmadmin user will also need to be supplied with select, insert, update and
delete permission upon the tables to be 'replicated' upon the destination system.

The strmadmin user will also require FULL OLS privileges to write to security
protected tables IF OLS is implemented upon the target database.

2.2 Streams Initialisation Parameters
A number of database initialisation parameters must be set to ensure Streams
works correctly. These are documented in The Streams Administration Guide
and in the table below, but must include:

GLOBAL_NAMES = TRUE
JOB_QUEUE_PROCESSES = 4 (or more)

STREAMS_POOL_SIZE = 256M (set even if using
 Automatic Shared Memory Management to specify a minimum size)

The following table is extracted from the "Oracle Streams
Performance and Troubleshooting Best Practices: Oracle Database 10g
Release 2" MAA white paper.

Parameter Name Description

Macrotone Consulting Ltd
Streams Setup

11
Streams Setup

Parameter Name Description

AQ_TM_PROCESSES Do not explicitly set this parameter to 0 or 10. Doing so could
disable the queue monitoring processing and impact the
Streams pool memory utilization.
If this parameter has not been set, the parameter will be auto
tuned.
If this parameter has been explicitly set to 0 or 10, either in
the initialization parameter file or by the ALTER SYSTEM
statement, then reset the parameter to 1.

DB_NAME On each Streams database, specify the name that was
given to the database when it was first created. For
example, if your source database is called STREAMSS
and your target database is called STREAMSD, be
sure to set the DB_NAME parameter on each database
accordingly. To determine the value of DB_NAME, log
into SQL*Plus as SYSDBA. Issue the following query to
determine the name: SELECT NAME FROM
V$DATABASE;

DB_DOMAIN On each Streams database, specify the network domain
where the database resides. For example, if the source
database is in mydomainA.com domain and the target
database is mydomainB.com domain, then ensure that the
DB_DOMAIN parameter is set to the correct domain. For
example, on the source database, specify
DB_DOMAIN=mydomainA.com and on the target database,
specify DB_DOMAIN=mydomainB.com.

GLOBAL_NAME=TRUE On each Streams database, specify
GLOBAL_NAMES=TRUE to ensure that each database link
used by Streams has the same name as the destination's
database GLOBAL_NAME to which the link points.

COMPATIBLE=10.2

On each Streams database, set the COMPATIBLE
parameter to "10.2" to use the new features available with
Oracle Database 10g release 2 (10.2). Note that once you
set COMPATIBLE to 10.2, you can no longer downgrade to
your previous release.

JOB_QUEUE_PROCESSES=4

On each Streams database, specify
JOB_QUEUE_PROCESSES=4 (the minimum recommended
value) to start and use four job queue processes (]nnn) for
Streams propagation jobs. If this parameter is already set,
then increment the JOB_QUEUE_PROCESSES parameter
by the number of independent Stream propagations.

JOB_QUEUE_INTERVAL=1

On each Streams database, specify how many seconds the
job queue is scanned for work. It is recommended that you
set this parameter to 1 (seconds) to improve the propagation
job performance and minimize the delay for how often
propagation jobs will execute.

TIMED_STATISTICS=TRUE On each Streams database, set the
TIMED_STATISTICS=TRUE parameter to allow
performance statistics to be gathered for analysis of potential
performance bottlenecks. Setting this parameter may have
some performance impact. However, it is necessary to
collect the statistics required to conduct performance tuning

Macrotone Consulting Ltd
Streams Setup

12
Streams Setup

Parameter Name Description
once Streams is running.

STATISTICS_LEVEL=TYPICAL On each Streams database, set this parameter to
TYPICAL to collect the necessary statistics. This
parameter works with the TIMED_STATISTICS
parameter to determine where performance issues
occur when Streams is running. Set both the
TIMED_STATISTICS and STATISTICS_LEVEL
parameters because:
The performance impact is minimal for both.
The Automatic Workload Repository (AWR) report
and Active Session History (ASH) reports depend on
these parameters.
Note: Ensure that AWR is installed and running on
each Streams database.

SHARED_POOL_SIZE=256M On each Streams database, set this parameter to a
minimum value of 256 MB because Streams uses a
significant amount of PL/SQL and library cache
components. Future performance analysis may
provide recommendations for how much to increase
the size of SHARED_POOL_SIZE, especially for the
database running Stream apply processes. Also, see
the "Oracle Streams Performance and
Troubleshooting Best Practices: Oracle Database 10g
Release 2" MAA white paper that provides practical
tuning and troubleshooting techniques for Streams
configurations.

STREAMS_POOL_SIZE=256M On each database where there is either a capture or
apply process running, set the
STREAMS_POOL_SIZE parameter to a minimum of
256M. Memory from the Streams pool is used by both
the Streams processes and the buffered queue, with
the LCRs in the buffered queue the largest
component. Use the V$STREAMS_POOL_ADVICE
view to help you size the buffered queue.
For downstream capture, do not set the
STREAMS_POOL_SIZE parameter on the source
database if there are no capture processes
configured. For local capture, set the
STREAMS_POOL_SIZE parameter on the source and
target databases.

Table 2 - Streams Initialisation Parameters

2.3 Supplementary Logging
Data Capture works through mining the redo logs on the source database, but for
this to work best the source database has to be instructed to perform
supplemental logging on the tables to be tracked. This may be set at the
database level or upon the individual tables. The following show the command to
set the supplemental logging upon the database.

alter table emp add supplemental log group log_group_emp(empno)
always;

Note: In Oracle 10g release 2, if the STREAMS_ADM package is used to set up
the replication as is the situation in these instructions then the supplementary

Macrotone Consulting Ltd
Streams Setup

13
Streams Setup

logging is automatically performed and there is no need to change all the tables
individually as a separate step.

It is noted that when the STREAMS_ADM package is used to generate the
capture process that it performs an 'ALTER' upon the database to add
supplementary logging. This is by design but might not be the expected
behaviour.

2.4 Queues
Streams uses buffer queues with a payload type of ANYDATA to propagate
messages from the source database to the target database. When a capture
process or apply process is created, the process is associated with a specific
ANYDATA queue. When a propagation process is created, it is associated with a
specific source queue and destination queue, therefore these queues need to be
created first. Streams uses buffer (in-memory) secure queues; these secure
queues ensure that no other users apart from the STRMADMIN user can access
messages in the queue.

2.4.1 Source Database Queue
BEGIN

dbms_streams_adm.set_up_queue(
queue_table => 'SRC_QT_1',
queue__name => '' SRC_Q1' ,,
queue__user => 'STRMADMIN');

END;
 /

2.4.2 Target Database Queue
BEGIN
dbms_streams_adm. set_up_queue (

queue_table => ' TGT_QT_1' ,
queue_name => 'TGT_Q1',
queue_user => 'STRMADMIN');

END;
/

2.4.3 Queues in a RAC configuration
When Streams is configured in a RAC environment, each queue table has an
"owning" instance. All queues within an individual queue table are owned by the
same instance. The Streams components (capture/propagation/apply) all use
that same owning instance to perform their work. This means that:

 A capture process is run at the owning instance of the source queue.

 A propagation job must run at the owning instance of the queue.

 A propagation job must connect to the owning instance of the target
queue.

Ownership of the queue can be configured to remain on a specific instance, as
long as that instance is available, by setting the PRIMARY_INSTANCE and/or
SECONDARY_INSTANCE parameters of
DBMS_AQADM.ALTER_QUEUE_TABLE. If the PRIMARY_INSTANCE is set to
a specific instance (i.e., not 0), the queue ownership will return to the specified
instance whenever the instance is up.

Capture will automatically follow the ownership of the queue. If the ownership
changes while capture is running, capture will stop on the current instance and
restart at the new owner instance.

For queues created with Oracle Database 10g Release 2, a service will be
created with the service name = schema.queue and the network name
SYS$schema.queue.global_name for that queue. If the global_name of the

Macrotone Consulting Ltd
Streams Setup

14
Streams Setup

database does not match the db_name.db_domain name of the database, be
sure to include the global_name as a service name in the init.ora.

For propagations created with the Oracle Database 10g Release 2 code with the
queue_to_queue parameter to TRUE, the propagation job will deliver only to the
specific queue identified. Also, the source dblink for the target database connect
descriptor must specify the correct service (global name of the target database)
to connect to the target database. For example, the tnsnames.ora entry for the
target database should include the CONNECT_DATA clause in the connect
descriptor for the target database. This clause should specify
(CONNECT_DATA=(SERVICE_NAME='global_name of target database')). Do
NOT include a specific INSTANCE in the CONNECT_DATA clause.

2.5 Propagation
2.5.1 Database Link

The propagation process moves the changes to the replicated tables from the
source database to the target database in the form of a Logical Change Record
(LCR). Therefore, a database link is required to support this. [See 7.1 for further
information on the database link setup.] An example is shown below:

CREATE DATABASE LINK TGT CONNECT TO strmadmin IDENTIFIED BY
password using 'TGT';

Check that the link works.

select * from dual@TGT;

Note that because the database has the global_names=true setup, the name of
the database link must match the name of the target database exactly.

Propagation can be set up for an individual table, an entire schema or the entire
database. The choice of which to use will be driven by to specific number of
tables and/or schemas to be replicated. An example is given below for both an
individual table and also for an entire schema.

2.5.2 Table Propagation Rule
Propagation is set up by adding a rule for each table to be replicated as follows.
The first call to the procedure for a streams_name (i.e. the name of the
propagation) configures the streams environment appropriately. Propagation is a
queue to queue process (i.e. source_queue_name to destination_queue_name)

BEGIN
dbms_streams_adm.add_table_propagation_rules(

table_name => 'SCOTT.BMP',
streams_name => 'SRC_TO_TGT',
source_queue_name => 'STRMADMIN.SRC_Q1',
destination_queue_name => 'STRMADMIN.TGT_Q1@TGT',
include_dml => TRUE,
include_ddl=> FALSE,
source database => 'SRC',
inclusion_rule => TRUE,
queue_to_queue => TRUE);

END;
/

Multiple destinations can be supported from a single source queue if required.

2.5.3 Schema Propagation Rule
An entire schema can be propagated using the following example.

BEGIN

Macrotone Consulting Ltd
Streams Setup

15
Streams Setup

DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES (
schema_name => 'SCOTT',
streams_name => ' SRC_TO_TGT ' ,
source_queue_name => ' STRMADMIN. SRC_Q1 ' ,
destination_queue_name => ' STRMADMIN. TGT_Q1@TGT ',
include_dml => TRUE,
include_ddl => FALSE,
include_tagged_lcr => FALSE,
source_database => 'SRC',
inclusion_rule => TRUE,
queue_to_queue => TRUE) ;

END;
/

Running this procedure performs the following actions:

 Creates a propagation named SRC_TO_TGT. The propagation is created only if
it does not already exist.

 Specifies that the propagation propagates LCRs from STRMADMIN.SRC_Q1 in
the current database to STRMADMIN.TGT_Q1 in the TGT database.

 Specifies that the propagation uses the TGT database link to propagate the
LCRs, because the destination_queue_name parameter contains @TGT.

 Creates a positive rule set and associates it with the propagation, if the
propagation does not have a positive rule set, because the inclusion_rule
parameter is set to true. The rule set uses the evaluation context
SYS.STREAMS$_EVALUATION_CONTEXT. The rule set name is system
generated.

 Creates two rules. One rule evaluates to TRUE for row LCRs that contain the
results of DML changes to the tables in the hr schema, and the other rule
evaluates to FALSE for DDL LCRs that contain DDL changes to the hr schema
or to the database objects in the hr schema. The rule names are system
generated.

 Adds the two rules to the positive rule set associated with the propagation. The
rules are added to the positive rule set because the inclusion_rule parameter is
set to true.

 Specifies that the propagation propagates an LCR only if it has a NULL tag,
because the include_tagged_lcr parameter is set to false. This behaviour is
accomplished through the system-created rules for the propagation.

 Specifies that the source database for the LCRs being propagated is repl .net,
which might or might not be the current database. This propagation does not
propagate LCRs in the source queue that has a different source database.

 Creates a propagation job for the queue-to-queue propagation.

2.5.4 Propagation settings
There is one propagation parameter that it will probably be desirable to set. This
parameter is the LATENCY.

LATENCY=5 Default: 60

It is the maximum wait, in seconds, in the propagation window for a message to be
propagated. The default value is 60. Caution needs to be exercised if latency is not
specified for this call; otherwise latency will over-write any existing value with the default
value.

For example: if the latency is 60 seconds, then during the propagation window, if there
are no messages to be propagated messages from that queue for the destination will not
be propagated for at least 60 more seconds. It will be at least 60 seconds before the
queue will be checked again for messages to be propagated for the specified destination.
If the latency is 600, then the queue will not be checked for 10 minutes and if the latency

Macrotone Consulting Ltd
Streams Setup

16
Streams Setup

is 0, then a job queue process will be waiting for messages to be enqueued for the
destination and as soon as a message is enqueued it will be propagated.

Propagation parameters can be set using the ALTER_PROPAGATION_SCHEDULE
procedure from the DBMS_AQADM package. For example, to set the latency parameter
of the streams propagation from the STREAMS_QUEUE owned by STRMADMIN to the
target database whose global_name is DEST_DB for the queue Q1, use the following
syntax while logged in as the Streams Administrator:

dbms_aqadm.alter_propagation_schedule(
queue_name => ‘’STRMADMIN.SRC_Q1',
destination => 'TGT',
destination_queue =>'STRMADMIN.TGT_Q1',
latency => 5);

2.6 Capture Process
A capture process must be configured for each database from which changes are to be
captured. Capture rules can be created for individual tables, an entire schema or the
whole database.

If only a sub set of all the tables in a schema will be required and that it is preferable to
have specific rules for each table required, rather than a rule for a schema and a
'negative' rule for each table that is not required.

2.6.1 Table Capture Rule
As per propagation, a rule is required for each table and the first call performs the
configuration:

BEGIN
dbms_streams_adm. add_table_rules (

table_name => ' SCOTT. EMP ' ,
streams_type => 'CAPTURE',
streams_name => ' SRC_CAPTURE' ,
queue_name => ' STRMADMIN . SRC_Q1 ' ,

include_dml => TRUE,
include_ddl => FALSE,
inclusion_rule => TRUE) ;

END;
/

It may be found that when this above is run that the session will freeze. This is possibly
due to there being active transactions running upon the system, such that it is not
possible to perform the alter database to implement supplementary logging. Viewing the
'gv$transaction' table will show if there are any active transactions. All one can do is
either cancel the running transaction, which may not be advisable, or to wait until the
transactions finish.

Note that the first time a capture rule is created that the system will take a few minutes to
create all of the underlying objects. Subsequent capture rules run very quickly.

Do not start the capture processes just created. Oracle recommends that there is only
one capture process for each source database.

When a procedure is used in the DBMS_STREAMS_ADM package to add the capture
process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package for the specified table, specified
schema, or entire database, respectively, if the capture process is a local capture
process or a downstream capture process with a database link to the source database.

If there are many tables to perform a capture process upon, the suggested solution is to
have a small SQL procedure to generate the appropriate number of 'add_table_rule'
commands within a script and then execute the script. This will be easier to manage that
to have to run a number of 'delete_rule' commands.

Macrotone Consulting Ltd
Streams Setup

17
Streams Setup

The appropriate procedure must be run to prepare for instantiation manually if any of the
following conditions is true:

 The DBMS_RULE_ADM package is used to add or modify rules.

 An existing capture process is used and there are no added capture process
rules for any shared object.

 A downstream capture process is used with no database link to the source
database.

See section 2.11.1 for an additional post setup parameter to be modified.

2.7 Default Apply Process
A default apply process must be configured for each database to which changes are to
be applied (i.e. replicated). As with the other mechanisms such as propagation and
capture, the apply process may be defined at a table, schema or database level.

2.7.1 Table Apply Rule
As per propagation, a rule is required for each table and the first call performs the
configuration:

BEGIN
dbms_streams_adm. add_table_rules (

table_name => 'SCOTT. EMP',
streams_type => 'APPLY',
streams_name => 'TGT_APPLY',
queue_name => 'STRMADMIN . TGT_Q1',
include_dml => TRUE,
include_ddl => FALSE,
source_database => 'SRC',
inclusion_rule => TRUE) ;

END;
/

One common request is to convert the source schema to a different target schema;
this can easily be achieved by using a transformation. The use of the transformation
is shown in the following script which would be used instead of the above.

DECLARE
 l_dml_rule_name_all_rules . rule_name%TYPE;
 l_ddl_rule_name_all_rules . rule_name%TYPE;
BEGIN

dbms_streams_adm. add_table_rules (
table_name => 'SCOTT. EMP1,
streams_type => 'APPLY',
streams_name => 'TGT_APPLY',

queue_name => 'STRMADMIN. TGT_Q1',
include_dml => TRUE,
include_ddl => FALSE,
source_database => 'SRC',
inclusion_rule => TRUE,
dml_rule_name => l_dml_rule_name,
ddl_rule_name => l_ddl_rule_name) ;

dbms_streams_adm. rename_schema (
rule_name => l_dml_rule_name, from_schema_name => 'SCOTT',
to_schema_name => 'STAGING');

Macrotone Consulting Ltd
Streams Setup

18
Streams Setup

END;
/

Do not start the apply processes just created.
Optionally add parameters to the apply process. For example, to ensure that the
apply process stops when an error is encountered:

BEGIN
 dbms_apply_adm. set_parameter (
 apply_name => 'TGT_APPLY',
 parameter => ' DISABLE_ON_ERROR',
 value => 'Y');

END;
/

See also section 4. 11. 1.2 for an additional step to perform on the apply process.

2.7.2 Schema Apply Rule
If all of the tables are required in a new schema it would be possible to use a schema
rule rather than individual table rules as described above. This could then be altered
for any tables for which no 'replicated' copy is required and only a change table is
needed. This would be a 'negative' rule. At the current time the requirements of the
different destination systems are unknown so it is not possible to be certain of the
final usage.

DECLARE
 l_dml_rule_name_all_rules.rule_name%TYPE;
 l_ddl_rule_name_all_rules.rule_name%TYPE;
BEGIN
 dbms_streams_adm.add_schema_rules(
 schema name => 'SCOTT',
 streams_type => ‘APPLY’,
 streams_name => ‘TGT_APPLY’,
 queue_name => ‘STMADMIN.TGT_Q1’,
 include_dml => TRUE,
 include_ddl => FALSE,
 source_database => ‘SRC’,
 inclusion_rule => TRUE,
 dml_rule_name => l_dml_rule_name,
 ddl_rule_name => l_ddl_rule_name);

 dbms_streams_adm.rename_schema (
 rule_name => l_dml_rule_name,
 from_schema_name => ‘SCOTT’,
 to_schema_name => ‘STAGING’);

END;
/

An example of a negative rule set might be as follows:

BEGIN
--
 dbms_streams_adm.add_table_rules(

Macrotone Consulting Ltd
Streams Setup

19
Streams Setup

 table_name => ‘SCOTT.EMP’,
 streams_type => ‘APPLY’,
 streams_name => ‘TGT_APPLY’,
 queue_name => ‘STRMADMIN.TGT_Q1’,
 include_dml => TRUE,
 include_ddl => FALSE,
 source_database => ‘SRC’,
 inclusion_rule => FALSE);
END;
/

2.8 Change Table Apply Process

There are a number of tables that require a change table to be maintained (as well as
being processed by the default apply process). This can be achieved by adding another
apply process which in effect adds another subscriber to the destination queue (multi-
subscriber), so the same message is processed twice (i.e. we do not need to capture the
change twice).
The first step is to create an apply handler procedure, which reads and manipulates the
LCR (including changing the schema name to STAGING and the target table to include a
suffix of _CT in this example):

create or replace PACKAGE cdc_handler_pkg
AS
 PROCEDURE prc_insert_ct (pi_lcr_anydata IN SYS.ANYDATA);
 l_count NUMBER := 0;
 l_cscn NUMBER := 0;
END cdc_handler_pkg;
/

create or replace PACKAGE BODY cdc_handler_pkg
AS
--
 PROCEDURE prc_insert_ct(pi_lcr_anydata IN SYS.ANYDATA)
 AS

--
 l_lcr SYS.LCR$_ROW_RECORD;
 l_new_lcr SYS.LCR$_ROW_LIST;
 l_old_lcr SYS.LCR$_ROW_LIST;
 l_rc PLS_INTEGER;
 l_operation VARCHAR(2) := 'I';
 l_object_owner VARCHAR2(30);
 l_object_name VARCHAR2(30);
 BEGIN

— Get the LCR details and change target schema owner and table name
 l_rc := pi_lcr_anydata.GetObject (l_lcr);

 l_operation := UPPER (SUBSTR(l_lcr.get_command_type(),1,1));
 l_object_owner := l_lcr.get_object_owner;
 l_object_name := l_lcr.get_object_name;

-- Comment out the following line if schema changed in a transformation call
 l_lcr.set_object_owner ('STAGING');
 l_lcr.set_object_name (l_object_name || '_CT');
 IF l_cscn <> l_lcr.get_commit_scn
 THEN
 l_count := 1;
 l_cscn := l_lcr.get_commit_scn; ELSE

 l_count : = l_count + 1 ;
 END IF;

— Convert UPDATE / DELETE to INSERT
 IF l_operation IN ('U','D') THEN
 IF l_operation = 'U1THEN

Macrotone Consulting Ltd
Streams Setup

20
Streams Setup

 l_old_lcr := l_lcr.get_values ('old') ;
 l_new_lcr := l_lcr.get_values ('new') ;
 l_operation := 'UN'; ELSE
 l_new_lcr := l_lcr.get_values ('old’);

END IF;
—- Set appropriate values and delete old values as INSERT LCR cannot have them

 l_lcr.set_values ('new’, l_new_lcr);
 l_lcr.set_command_type ('INSERT'); l_lcr.set_values(‘old’, NULL);
 END IF;

-— Add new columns to LCR and execute
 l_lcr.add_column (‘new’ , 'OPERATION$' , anydata.convertvarchar2 (l_operation));
 l_lcr.add_column (‘new’ , 'CSCN$' , anydata.convertnumber (l_lcr.get_commit_scn));
 l_lcr.add_column ('new’ , 'RSID$' , anydata.convertnumber (l_count));
 l_lcr.add_column(‘new’ , 'COMMIT_TIMESTAMP$',
 anydata.convertdate (l_lcr.get_source_time));

l_lcr.add_column ('new' , 'SOURCE_SYSTEM$',
 anydata.convertvarchar2 (l_lcr.get_source_database_name));

l_lcr.execute (true);
 IF l_operation = 'UN' THEN
 l_lcr.set_values ('new’ ,l_old_lcr);
 l_lcr.add_column (•new’ , 'OPERATION$’, anydata.convertvarchar2 (!UO'));
 l_lcr.add_column ('new' , 'CSCN$',
 anydata.convertnumber (l_lcr.get_commit_scn));
 l_lcr.add_column('new' , 'RSID$ ' , anydata.convertnumber (l_count));

l_lcr.add_column(•new1 , 'COMMIT_TIMESTAMP$ ' ,
 anydata.convertdate (l_lcr.get_source_time));

l_lcr.add_column (' new ' , ' SOORCE_SYSTEM$ ' ,
 anydata. convertvarchar2 (l_lcr.get_source_database_name));
 1_lcr.execute (true);

 END IF;

END prc_insert_ct;
END cdc_handler_pkg;
/
show err

Note: The example code above has been formatted to display within this document and may not
accurately reflect the format of the actual code used.

The apply process example above has been made specifically generic to make it applicable
to multiple (all) tables for which change capture is required. Additional information to be
captured may include change time etc. The procedure above also illustrates that 'updates'
also capture the 'old' values as well as the 'new' values. This required the creation of a
second LCR for the 'updates' to place data into the change tables.

Run the following to configure the apply process:

BEGIN

dbms_streams_adm . add_table_rules (
table_name => 'SCOTT.EMP',
streams_type => 'APPLY',
streams_name => 'TGT_CDC_APPLY',
queue_name => 'STRMADMIN.TGT_Q1',
include_dml => TRUE,
include_ddl => FALSE,
source_database => 'SRC',
inclusion_rule => TRUE);

END;

/
The procedure created above must now be set as the DML handler for the table. Note that a
separate call must be made for each DML operation.

Macrotone Consulting Ltd
Streams Setup

21
Streams Setup

BEGIN
dbms_apply_adm.set_dml_handler(

object_name => 'SCOTT.EMP',
object_type => 'TABLE',
operation_name => 'INSERT',
error_handler => FALSE,
user_procedure => 'CDC_HANDLER_PKG.PRC_INSERT_CT'
apply_database_link => NULL,
apply_name ~ => 'TGT_CDC_APPLY');

dbms_apply_adm.set_dml_handler(
object_name => 'SCOTT.EMP',
object_type => 'TABLE',
operation_name => 'UPDATE',
error_handler => FALSE,

 user_procedure => 'CDC_HANDLER_PKG.PRC_INSERT_CT'
apply_database_link => NULL,

apply_name => 'TGT_CDC_APPLY') ;
dbms_apply_adm. set_dml_handler (

object_name => 'SCOTT.EMP' ,
object_type => 'TABLE',
operation_name => 'DELETE’,
error_handler => FALSE,
user_procedure => 'CDC_HANDLER_PKG.PRC_INSERT_CT'
apply_database_link => NULL,
apply_name => 'TGT_CDC_APPLY') ;

END;
/

Optionally add parameters to the apply process. For example, to ensure that the apply
process stops when an error is encountered:

BEGIN
 dbms_apply_adm. set_parameter (
 apply_name => 'TGT_CDC_APPLY',
 parameter => 'DISABLE_ON_ERROR',
 value => 'Y');
END;
/

An alternative method to changing the schema name would be to change it in the
transformation process as illustrated for the normal apply process described earlier.
There are a few extra changes required in the scripts for the CDC_Apply scripts.

Firstly the package procedure needs to have the following line (10) removed or
commented out.

l_lcr.set_object_owner ('STAGING');

The table rules scripts will therefore become as follows instead of the above.

DECLARE
l_dml_rule_name_all_rules.rule_name%TYPE;
l_ddl_rule_name_all_rules.rule_name%TYPE;

BEGIN
dbms_streams_adm.add_table_rules (

table_name => 'SCOTT.EMP',
streams_type => 'APPLY',
streams_name => 'TGT_CDC_APPLY',

Macrotone Consulting Ltd
Streams Setup

22
Streams Setup

queue_name => 'STRMADMIN.TGT_Q1',
include_dml => TRUE,
include_ddl => FALSE,
source_database => 'SRC',
Inclusion_rule => TRUE,
dml_rule_name=> l_dml_rule_name,
ddl_rule_name => l_ddl_rule_name);

dbms_streams_adm.rename_schema (
rule_name => l_dml_rule_name,
from_schema_name => 'SCOTT',
to_schema_name => 'STAGING');

dbms_apply_adm.set_dml_handler(
object_name => 'STAGING.EMP',
object_type => 'TABLE',
operation_name => 'INSERT',
error_handler => FALSE,
user_procedure => 'CDC_HANDLER_PKG.PRC_INSERT_CT'
apply_database_link => NULL,
apply_name => 'TGT_CDC_APPLY');

dbms_apply_adm.set_dml_handler(
object_name => 'STAGING.EMP',
object_type => 'TABLE',
operation_name => 'UPDATE',
error_handler => FALSE,
user_procedure => 'CDC_HANDLER_PKG.PRC_INSERT_CT'
apply_database_link => NULL,
apply_name => 'TGT_CDC_APPLY');

dbms_apply_adm.set_dml_handler(
object_name => 'STAGING.EMP',
object_type => 'TABLE',
operation_name => 'DELETE',
error_handler => FALSE,
user_procedure => 'CDC_HANDLER_PKG.PRC_INSERT_CT'
apply_database_link => NULL,
apply_name => 'TGT CDC APPLY');

END;
/

2.9 Instantiation

Instantiation is the setting of the SCN for each database object for which changes
are applied by an apply process. If the database objects do not exist at a destination
database, then instantiate them using export/import, transportable tablespaces, or
RMAN. If the database objects already exist at a destination database, then set the
instantiation SCNs for them manually.
To instantiate database objects using export/import, first export them at the source
database. Next, import them at the destination database.
If the original Export utility is used, then set the OBJECT_CONSISTENT export
parameter to y. Regardless of whether you use Data Pump export or original export,
it is possible to specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.
If the original Import utility is used, then set the STREAMS_INSTANTIATION import
parameter to y.

Macrotone Consulting Ltd
Streams Setup

23
Streams Setup

2.9.1 Use of network datapump
One common method of ensuring that the destination database has the objects at the
same state as the source database is to create the target object using the Oracle
supplied utility 'impdp'.

For this a script is run at the target database to pull the database objects over the
network onto the target database. No dump file is created on the operating
system using this method. The use of a parameter file is often used to make it
easier to use the impdp command. Such a parameter file might look as follows:

REMAP_SCHEMA=SCOTT:STAGING
SCHEMAS=SCOTT
LOGFILE=imp_scott.log
NETWORK_LINK=SRC
DIRECTORY=DATAPUMPDIR

The network link is a database link name defined to the database directed at the source
database. The logfile is a record of the script as it runs created in the database directory
pointed to by the DIRECTORY parameter. The schema name required is obvious and the
remap_schema statement enables the objects on the target database to belong to a different
owner from those of the source.

To invoke the script the following command is issued:

impdp user/password parfile=parfile

If the password is not specified the user is prompted for the value when the command is
issued. There are a number of other optional parameters and the interested reader is referred
to the official Oracle documentation.

2.9.2 Object instantiation
To set the instantiation SCN for a table, schema, or database manually, run the appropriate
procedure or procedures in the DBMS_APPLY_ADM package at the destination database:

SET_TABLE_INSTANTIATION_SCN
SET_SCHEMA_INSTANTIATION_SCN
SET_GLOBAL_INSTANTIATION_SCN

When any one of these procedures is run, it is important to ensure that the shared objects at
the destination database are consistent with the source database as of the instantiation SCN.

If the SET_GLOBAL_INSTANTIATION_SCN is run at a destination database, then set the
recursive parameter for this procedure to true so that the instantiation SCN also is set for
each schema at the destination database and for the tables owned by these schemas.

If the SET_SCHEMA_INSTANTIATION_SCN is run at a destination database, then set the
recursive parameter for this procedure to true so that the instantiation SCN also is set for
each table in the schema.

If the recursive parameter to set to true in the SET_GLOBAL_INSTANTIATION_SCN
procedure, or within the SET_SCHEMA_INSTANTIATION_SCN procedure; a database link
from the destination database to the source database is required. This database link must
have the same name as the global name of the source database and must be accessible to
the user who executes the procedure.

2.9.3 Table instantiation call:
DECLARE
 vIscn NUMBER;
BEGIN
 vlscn := dbms_flashback.get_system_change_number();
 dbms_apply_adm.set_table_instantiation_scn@TGT(
 source_object_name => 'SCOTT.BMP',
 source_database_name => 'SRC',

Macrotone Consulting Ltd
Streams Setup

24
Streams Setup

 instantiation sen => vlscn};
END;
/

2.9.4 Schema instantiation call
DECLARE
 vlscn NUMBER;
BEGIN
 vlscn := dbms_flashback. get_system_change_number ();

dbms_apply_adm.set_table_instantiation_scn@TGT (
 source_schema_name => 'SCOTT.EMP',
 source_database_name => 'SRC',
 recursive => TRUE,
 instantiation_scn => vlscn);
END;
/

Alternatively, it is possible to perform a metadata export/import to set the instantiation
SCNs for existing database objects. If this option is chosen, then make sure no rows are
imported. Also, make sure the shared objects at all of the destination databases are
consistent with the source database that performed the export at the time of the export. If
there is sharing of DML changes only, then table level export/import is sufficient. If there
is sharing of DDL changes also, then additional considerations apply.

In the suggested solution it is important to note that changes to the tables upon the
destination database should be used for read only purposes, otherwise there is a high
risk that 'replicated' changes from the source database may encounter errors. This is a
configuration option.

2.10 Startup

As the capture and apply processes define above are not automatically started on
creation, they must be started manually. (Note: apply before capture).
Note that the propagation processes are started on creation.

2.10.1 Start the Apply
BEGIN

dbms_apply_adm.start_apply (apply_name => 'TGT_APPLY');
END;
/

BEGIN
 dbms_apply_adm.start_apply(

apply_name => 'TGT_CDC_APPLY');
END;
/

2.10.2 Start the Capture
BEGIN
 dbms_capture_adm.start_capture (

capture_name => 'SRC_CAPTURE'
END;
/

2.10.3 Starting order
The capture process must be created before the relevant objects are instantiated at a remote
destination database.

Macrotone Consulting Ltd
Streams Setup

25
Streams Setup

The propagations and apply processes must be created before starting the capture process,
and the objects must be instantiated before running the whole stream.

If the propagation process has been stopped, possibly for maintenance purposes, it can be
restarted again by running the following procedure.

BEGIN
 dbms_propagation_adm.start_propagation(

propagation_name => 'SRC_TO_TGT’);
END;
/

2.11 Post Configuration Tasks
After setting up your downstream or local capture configuration, perform the following steps
to finalize and verify the configuration:

2.11.1 Set Capture Checkpoint Retention Time Parameter
Set the CHECKPOINT_RETENTION_TIME capture parameter to specify the number of days of
checkpoints the capture process will retain. The default value for this parameter is 60 days
but the recommended initial setting is 7 days.

Changing this parameter to 7 days can reduce the volume of checkpoint information that the
capture process purges, and therefore improves the overall performance of the capture
process.

For example:

BEGIN
DBMS_CAPTURE_ADM.ALTER_CAPTURE(

capture_name => 'SRC_CAPTURE',
checkpoint_retention_time => 7);

END;
/

Query the CAPTURE_NAME of the DBA_CAPTURE view to obtain the name of the capture
process.

2.11.2 Set apply parallelism to 4.
As a starting point, set the degree of parallelism for the apply process to "4" as shown in the
following example:

BEGIN
DBMS_APPLY_ADM.SET_PARAMETER(

'TGT_APPLY' , 'PARALLELISM', '4');
END;
/

See the Oracle Streams Performance and Troubleshooting Best Practices [Table
1] white paper for a discussion about how to determine the optimum degree of
parallelism.

Note: The example show above for this step specifies the name TGT_APPLY for the
apply process. To find the name of the apply process in the actual configuration; query
the APPLY_NAME column of the DBA_APPLY view on the target database.

2.12 Error Handling
If the apply process encounters an unhandled error when it tries to apply an LCR at the
destination Oracle database, then the transaction containing the LCR is placed in an
exception queue in the Oracle database that is running the apply process. The apply
process detects data conflicts and uses automatic conflict resolution. Any data conflicts
encountered that can not be resolved are treated as apply errors.

Macrotone Consulting Ltd
Streams Setup

26
Streams Setup

All errors should be investigated to determine the cause of the error. Once identified the
particular apply change can either be removed or re-processed as appropriate.

2.13 Housekeeping
2.13.1 Stopping the Replication.

To stop the replication the following steps must be performed in the following order. First
stop the capture process.

Stop the Capture

BEGIN
 dbms_capture_adm.stop_capture (

capture_name => 'SRC_CAPTURE');
END;
/

Once the capture has stopped ensure that all captured changes have been
propagated to the destination system before stopping the propagation process.
Stop the propagation

BEGIN
 dbms_propagation_adm.stop_propagation (

propagation_name => 'SRC_TO_TGT');
END;
/

Now the apply processes for the CDC capture and the simple replication can be stopped.

Stop the Apply

BEGIN
 dbms_apply_adm. stop_apply (apply_name => 'TGT_APPLY');
END;
/

BEGIN
 dbms_apply_adm.stop_apply(apply_name =>
'TGT_CDC_APPLY');
END;
/

2.13.2 Removing Streams replication completely.
Once the various streams processes have been stopped it is possible to remove them
from the systems completely.

2.13.2.1 Drop the propagation

BEGIN
 dbms_propagation_adm.drop_propagation(

propagation_name => 'SRC_TO_TGT',
drop_unused_rule_sets => true);

END;
/

Macrotone Consulting Ltd
Streams Setup

27
Streams Setup

2.13.2.2 Drop the capture

BEGIN
 dbms_capture_adm.drop_capture(

capture_name => 'SRC_CAPTURE',
drop_unused_rule_sets => true);

END;
/

2.13.2.3 Drop the apply

BEGIN
 dbms_apply_adm.delete_all_errors(

apply_name => 'TGT_APPLY');
 dbms_apply_adm.drop_apply(

apply_name => 'TGT_APPLY',
drop_unused_rule_sets => true);

END;
/

BEGIN
 dbms_apply_adm.delete_all_errors(

apply_name => 'TGT_CDC_APPLY');
 dbms_apply_adm.drop_apply(

apply_name => 'TGT_CDC_APPLY',
drop_unused_rule_sets => true);

END;
/

2.13.2.4 Drop both of the secure queues
Source queue

BEGIN
dbms_streams_adm.remove_queue('SRC_Q1', true,true);

END;
/

Destination queue

BEGIN
dbms_streams_adm.remove_queue('TGT_Q1',true,true);

END;
/

2.13.2.5 Removing streams configuration
The following procedure removes the streams configuration.

BEGIN
dbms_streams_adm.remove streams configuration;

END;
/

2.13.2.6 Drop the streams administrator
The final step is to drop the streams administrator from each system.

DROP USER strmadmin cascade;

Macrotone Consulting Ltd
Streams Setup

28
Streams Setup

3 MONITORING
There are a number of ways in which the Streams configuration can be monitored. This
section describes the alternatives available.

3.1 Strmmon Utility
STRMMON is a monitoring tool focused on Oracle Streams. Using this tool, Database
administrators get a quick overview of the Streams activity occurring within a database.
The output format comes in two formats: default and long.

The default format reports the rate of activity occurring for Streams processes.

The long format provides the detailed information that was available in previous releases
of STRMMON. The reporting interval and number of iterations to display are configurable.

STRMMON can also be used to report Streams activity on two databases at a time within
the same strmmon session.

As of Oracle 10g Release 2, STRMMON is distributed as in the demo directory of the
database distribution code upon the companion CD.

Note that it tends to display information upon a specific node only, not all the nodes in a
RAG cluster.

Strmmon usage

There are 7 command line input parameters for STRMMON: interval, count, user,
passw, dbname, sysdba and long. The first 2 parameters (interval and count) control the
sampling rate and the amount of output. The next 4 parameters specify the connect
information to the particular Streams database. Use multiple occurrences of these 4
parameters to monitor multiple databases within the same strmmon command.
Specifying the last parameter (long) displays more detailed information about each
process.

When the command strmmon is issued without any parameters, a usage message is
displayed:

% strmmon
Usage: strmmon -interval <seconds> -count <number> [-user <user name>]
[-passw <password>] [-dbname <database name>] [-sysdba] -long

Parameter Name Value Units Description

-interval Seconds The interval at which
STRMMON will monitor the
database. To specify that the
sampling rate to be every 3
seconds: -interval 3 This is a
required parameter for
strmmon.

-count Number The number of iterations to
monitor the Streams
environment. To specify 5
iterations, use the following: -
count 5 This is a required
parameter for strmmon.

-user Username The schema name for logging
into the database. Any schema
name can be specified. If the
SYS schema is specified,

Macrotone Consulting Ltd
Streams Setup

29
Streams Setup

Parameter Name Value Units Description

additional information is
displayed. To specify the
SYSTEM schema, use -user
SYSTEM
This parameter should not be
specified if
logging in as 7 as sysdba" is
desired.
-user is an optional parameter
for strmmon.

-passw Password The login password for the
schema identified with the -
user clause. To specify the
password for the SYSTEM
schema, use -passw oracle
This parameter should
not be specified if logging
in as 7 as sysdba" is
desired -passw is an
optional parameter for
strmmon.

-dbname service name The connection information or
service name from
tnsnames.ora for the specific
database to be monitored. To
specify the connect
information for the monitored
database, use -dbname
ORCL.WORLD This is an
optional parameter for
strmmon.

-sysdba This flag indicates that the login
role is SYSDBA. This optional
parameter is typically used
with the SYS schema. To
specify the login role SYSDBA,
use -sysdba
When logging in as 7 as
sysdba", the –user and -passw
parameters are not required.

-long This flag indicates that the
more detailed report is desired.
This is an optional parameter
for STRMMON. By default,
only the capture, apply and
propagation rates are
displayed.

Table 3 - Strmmon utility parameters
The strmmon output begins with a banner line identifying the program parameters and
database. This information is followed with a brief description of the major components of
the output display. The Streams Pool Size line is displayed for database versions 10g and
above.

Macrotone Consulting Ltd
Streams Setup

30
Streams Setup

Please see the official documentation [Metalink Note: 290605.1] for more details of the
usage of this utility.

3.2 DDL Replication
When replicating DDL, the effect of the DDL statement on the replicated sites has to be
considered. In particular, one should not allow system generated naming for constraints
or indexes, as modifications to these will most likely fail at the replicated site. Also,
storage clauses may cause some issues if the target sites are not identical.

When it is decided NOT to replicate DDL in your Streams environment, any table
structure change has to be performed manually.

3.3 Propagation
At times, the propagation job may become "broken" or fail to start after an error has been
encountered or after a database restart. The typical solution is to disable the propagation and
then re-enable it.

exec dbms_propagation_adm.stop_propagation('propagation_name');
exec dbms_propagation_adm.startjDropagation('propagation_name');

If the above does not fix the problem, perform a stop of propagation with the force parameter
and then start propagation again.

exec dbms_propagation_adm.stop_propagation('propagation_name',force=>true);
exec dbms_propagation_adm.start_propagation('propagation_name');

An additional side-effect of stopping the propagation with the force parameter is that the
statistics for the propagation are cleared.

3.4 Source Queue Growth
Source queue may grow if one of the target sites is down for an extended period, or
propagation is unable to deliver the messages to a particular target site (subscriber) due to
network problems for an extended period. Automatic flow control minimizes the impact of this
queue growth. Queued messages (LCRs) for unavailable target sites will spill to disk storage
while messages for available sites are processed normally.

Propagation is implemented using the DBMS_JOB subsystem. If a job is unable to execute
16 successive times, the job will be marked as "broken" and become disabled. Be sure to
periodically check that the job is running successfully to minimize source queue growth due
to this problem.

3.5 Useful tables and views
All Streams processing is done at the "owning instance" of the queue. To determine the
owning instance, use the query below:

SELECT q.owner, q.name, t.queue_table, t.owner_instance,
FROM DBA_QUEUES q, DBA_QUEUE_TABLES t
WHERE t.object_type = 'SYS.ANYDATA'
AND q.queue_table = t.queue_table
AND q.owner = t.owner;

To display the monitoring view information it is possible to either query the monitoring views
from the owning instance or use the GV$ views for dynamic streams views.

Dynamic Streams Views

Streams View Name Streams View Name from any RAC instance

V$STREAMS_CAPTURE GV$STREAMS_CAPTURE

Macrotone Consulting Ltd
Streams Setup

31
Streams Setup

Dynamic Streams Views

V$STREAMS_APPLY_COORDINATOR GV$STREAMS_APPLY_COORDINATOR
V$STREAMS_APPLY_READER GV$STREAMS_APPLY_READER
V$STREAMS_JAPPLY_SERVER GV$STREAMS_APPLY_SERVER
V$STREAMS_POOL_ADVICE GV$STREAMS_POOL_ADVICE
V$STREAMS_TRANSACTION GV$STREAMS_TRANSACTION
V$BUFFERED_PUBLISHERS GV$BUFFERED_PUBLISHERS
V$BUFFERED_QUEUES GV$BUFFERED_QUEUES
V$BUFFERED_SUBSCRIBERS GV$BUFFERED_SUBSCRIBERS
V$PROPAGATION_RECEIVER GV$PROPAGATION_RECEIVER
V$PROPAGATION_SENDER GV$PROPAGATION_SENDER
V$RULE GV$RULE
V$RULE_SET GV$RULE_SET
V$RULE_SET_AGGREGATE_STATS GV$RULE_SET_AGGREGATE_STATS

Static Streams Views Capture Views
DBA CAPTURE
DBA CAPTURE EXTRA ATTRIBUTES
DBA CAPTURE PARAMETERS
DBA CAPTURE PREPARED DATABASE
DBA CAPTURE PREPARED SCHEMAS
DBA CAPTURE PREPARED TABLES

Apply Views
DBA APPLY
DBA APPLY CONFLICT COLUMNS
DBA APPLY DML HANDLERS
DBA APPLY ENQUEUE
DBA APPLY ERROR
DBA APPLY EXECUTE
DBA APPLY INSTANTIATED GLOBAL
DBA APPLY INSTANTIATED OBJECTS
DBA APPLY INSTANTIATED SCHEMAS
DBA APPLY KEY COLUMNS
DBA APPLY OBJECT DEPENDENCIES
DBA APPLY PARAMETERS
DBA APPLY PROGRESS
DBA APPLY SPILL TXN
DBA APPLY TABLE COLUMNS
DBA APPLY VALUE DEPENDENCIES

Propagation & Queue Views Streams Views

Macrotone Consulting Ltd
Streams Setup

32
Streams Setup

Dynamic Streams Views

DBA PROPAGATION
DBA QUEUE SCHEDULES
DBA QUEUE SUBSCRIBERS
DBA QUEUE TABLES DBA QUEUES

Streams Views

DBA REGISTERED ARCHIVED LOG
DBA RECOVERABLE SCRIPT
DBA RECOVERABLE SCRIPT BLOCKS
DBA RECOVERABLE SCRIPT ERRORS
DBA RECOVERABLE SCRIPT PARAMS
DBA STREAMS ADD COLUMN
DBA STREAMS ADMINISTRATOR
DBA STREAMS DELETE COLUMN
DBA STREAMS GLOBAL RULES
DBA STREAMS MESSAGE CONSUMERS
DBA STREAMS MESSAGE RULES
DBA STREAMS NEWLY SUPPORTED
DBA STREAMS RENAME COLUMN
DBA STREAMS RENAME SCHEMA
DBA STREAMS RENAME TABLE
DBA STREAMS RULES
DBA STREAMS SCHEMA RULES
DBA STREAMS TABLE RULES
DBA STREAMS TRANSFORM FUNCTION
DBA STREAMS TRANSFORMATIONS
DBA STREAMS UNSUPPORTED
DBA RULE SET RULES
DBA RULE SETS DBA RULES
DBA HIST BUFFERED QUEUES
DBA HIST BUFFERED SUBSCRIBERS
DBA HIST RULE SET
DBA HIST STREAMS APPLY SUM
DBA HIST STREAMS CAPTURE
DBA HIST STREAMS POOL ADVICE

Table 4 - Dynamic Streams Views
The following tables/views have been found very useful in setting up the streams
configuration.

user_rules
all_streams_table_rules
dba_propagation

Macrotone Consulting Ltd
Streams Setup

33
Streams Setup

Dynamic views

gv$streams_capture
gv$streams_apply_reader
gv$streams_apply_server
gv$streams_apply_coordinator

Macrotone Consulting Ltd
Streams Setup

34
Streams Setup

3.6 Monitoring Scripts
To aid in maintenance a number of SQL scripts have been written. These scripts built
upon the tables and views described in section 5.5 are described below:

Script Name Description

apply_conf.sql Displays Streams Apply configuration

apply_errors.sql Displays errors encountered in the Streams Apply processes.

apply_progress.sql Displays the current state of progress of the Streams Apply processes

apply_status.sql Displays the current Streams Apply status

capture_arch.sql Displays the details of the archivelogs required to initiate the Capture
process.

buffer_q Displays buffer queue statistics.

capture_config.sql Displays the Streams Capture configuration.

capture_errors.sql Displays the Streams Capture errors.

capturejatency.sql Displays the Streams redo log scanning latency.

capture_perf.sql Displays the Streams Capture performance.

capture_status.sql Displays the Streams Capture status.

hc.sql Oracle supplied Health Check script for Streams 10.2.

pool_advice.sql Displays the various pool sizes used by Streams configuration.

prop_config.sql Displays the Streams Propagation configuration.

prop_dest_perf.sql Displays the Streams Destination Propagation performance.

prop_receiver_status.sql Displays the Streams Propagation Receiver status.

prop_schedule.sql Displays the Streams Propagation Schedule.

prop_sender_status.sql Displays the Streams Propagation sender status.

prop_source_perf.sql Displays the Streams Propagation Source performance.

Table 5 - Streams Monitorinq SQL scripts
These scripts should be run by a suitably authorised user such as the Streams
administrator (strmadmin) or the system user.

Macrotone Consulting Ltd
Streams Setup

35
Streams Setup

3.7 Grid Control Monitoring
Oracle Grid Control provides a convenient method of monitoring (and configuring)
streams. The following describes the main screens visible from within Grid Control.

For the example screen shots shown in this document a database performing a capture
and propagation mechanism is used.

The first step is to log into the OEM web page using an authorised username and
password. Then click on the Targets' Tab (top left hand side of web page) and then the
'Databases' entry item (top right of web page.).

It is expected that the administrator is aware of the source (or destination database) and
can pick the appropriate database from the list of all databases available. It is not
necessary to pick an individual database instance within a RAC cluster since picking the
database name is sufficient.

A database summary page for the chosen database will be displayed as shown in the
example below.

Figure 3 - OEM Database home page

To view the streams configuration click on the 'Maintenance' name on the tab bar, and a
screen similar to the following will be displayed.

Figure 4 - OEM Database Maintenance page

It is observed that on the left hand side of the page approximately half way down is the
Streams heading with two options available 'Setup' and 'Maintenance'. Picking the
'Maintenance option, presents the following page.

Figure 5 - OEM Database Streams Maintenance page.

The screen shows that this chosen database has a single 'Capture' process, a
'Propagation process, no 'Apply' processes and a number of Queue tables and Queues.

Additional information can be obtained upon each of these. Opting for the 'Capture'
display presents a screen similar to the following:

Figure 6 - OEM Database Streams Capture page.

Additional information is available for the capture process 'EBA_CAPTURE' by clicking
upon the highlighted name presenting the following web page.

Figure 7 - OEM Database Streams Capture Details page.

If instead of opting for the capture process, we had instead opted for the ruleset details we
would have been presented with a display similar to the following: [The search for the
table to which the rule applied has also been shown in the diagram.]

Figure 8 - OEM Database Streams Capture Rulesets page.

Similarly it is possible to show more details upon the Propagation processes, the
apply processes and the messages queue tables and queues. The 'propagation'
page display is shown below to compare and illustrate the same page format as
explained for the 'capture' process above.

Figure 9 - OEM Database Streams Propagation page.

Macrotone Consulting Ltd
Streams Setup

36
Streams Setup

3.7.1 User Defined Metrics
It is possible within Oracle Grid Control to make use of user defined metrics to aid in
monitoring the Streams processes. The following is an example of configuring a user-
defined metric to monitor the Streams capture redo log scanning latency using Enterprise
Manager:

1. From the Instance Home Page, scroll down to Related Links and click User
Defined Metrics.

2. Click Create.

3. To monitor the redo log scanning latency for a particular capture process,
specify the following:
Name: Latency for capture
STREAMS_CAP1 Type: Number SQL
Query:

SELECT ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400)
LATENCY_SECONDS,
FROM V$STREAMS_CAPTORE
WHERE capture_name = 'STREAMS_CAP01';

Where the capture name specified is the name of the capture process.

Note: The trick here is to write a query that returns a single value and only one row. It is
possible to use any of the queries in the Streams Concepts and Admin guide as long as
they are modified to return a single value.

 Database Credentials : Streams administrator user and password

 Thresholds: > 300 (Warning) 900 (Alert)

(for this query, it is measured in seconds)

 Schedule: set to repeat continuously, at whatever level is best for your
business.

Other examples that may be performed include:

 Alerts for spilled messages

 Errors placed in DBA_APPLY_ERRORS

 Status of capture, propagation, or apply is aborted, stopped, or broken The
metrics that can be created depend on what it is that needs to be monitored.

3.8 Streams Commander (OSC)
There is another known Streams Monitoring tool known as Oracle Streams Commander.
This tool presents a graphical view of the configuration and is reported to be very easy to
use. This tool has not been evaluated.

Macrotone Consulting Ltd
Streams Setup

37
Streams Setup

4 AUTOMATING THE SETUP
There is a need to set up all the tables for which the capture process has to run, the tables
that need to be propagated (if a schema propagation is not used), the tables for which the
replicated apply process is required and the tables for which the change capture process is
required.
A simple script similar to that show below can be created for each of the above steps. The example shows the UNIX
script for the Streams replicated table apply process.

#!/bin/ksh
#
Script to generate the streams apply script for the Streams replication.
User is prompted to supply the required details such as database name etc.
Input list of table names are read from a DNIX file named file_list.
#
This script is assuming that we are creating a rule for each table,
and we are changing the schema.
#
Usage ./gen_apply_scr
Output is a file named apply.sql
#
G S Chapman 14th July 2008
#
ofile=apply.sql
Prompt for required input parameters. Use a default if a carriage return is given.

printf "Please enter source database name (default EBA) "
read sname
if [-z $sname] ; then

echo "Name not specified"
sname="EBA"

fi

printf "Please enter destination database name (default SRC) "
read dname
if [-z $dname] ; then

dname="SRC"
fi

printf "Please enter Streams Administrator (default: STRMADMIN) "
read sadmin
if [-z $sadmin] ; then

sadmin="STRMADMIN"
fi

printf "Please enter source schema (default SB1) "
read sschema
if [-z $sschema] ; then

echo "Source schema not specified"
sschema="SBl"

fi

printf "Please enter destination schema (default SB2) "
read dschema
if [-z $dschema] ; then

echo "Destination schema not specified"
dschema="SB2"

fi

printf "Please enter name of input file (default: file_list) "
read flist
if [-z $flist] ; then
flist="file_list"
fi

echo "Entered values:"
echo "Source Database name = " $sname
echo "Destination Database name = " $dname
echo "Streams admin = " $sadmin
echo "Source schema = " $sschema
echo "Destination schema = " $dschema
echo "Input file name = " $flist
Check input file specified actually exists. If not exit,

if [! -s $flist] ; then

Macrotone Consulting Ltd
Streams Setup

38
Streams Setup

echo "Specified file name does not exist " $flist
echo "Job terminating."
exit 1

fi

Now let use start generating the script.
printf "DECLARE\n" > $ofile
printf “--\n” >> $ofile 2>/dev/null
printf “ l_dml_rule_name all_rules.rule_name%%TYPE;\n" >> $ofile
printf “ l_dml_rule_name all_rules.rule_name%%TYPE;\n" >>$ofile
printf "--\n" >> $ofile 2>/dev/null
printf "BEGIN\n" >> $ofile
printf "--\n" >> $ofile 2>/dev/null
while read fname do
#
Check source schema name
If schema is specified in the input file extract it, otherwise use what was given.
#
schema=’echo $fname | awk -F. '(print $1}''
if [$fname != $schema] ; then

ischema=$schema
if name='echo $fname | awk -F. '{print $2}''

else
ischema=$sschema
ifname=$fname fidbms streams adm.add table rules{\n" >> $ofile

$ofile
--\n'
dbms_streams_adm.rename_schema(\n" >> $ofile
rule_name => l_dml_rule_name,\n" >> $ofile
from_schema_name => '"$ischema"',\n" >> $ofile
to_schema_name => '"$dschema"');\n" >> $ofile
\n" » $ofile 2>/dev/null

table_name
streams_type
streams_name
queue_name
include_dml
include_ddl
source_database
inclusion_rule
dml_rule_name
ddl_rule_name
>> S^ofile 2>/dev/null
$ofile
=> ' "$ischema" . "$ifname" ' ,\n"
=> 'APPLY', \n" >> Sofile
=> ' "$dname"_APPLY' , \n" >> $ofile
=> "'$sadmin"."$dname"_APPLY_QOEOE' , \n"
=> TRDE,\n" >> $ofile
=> FALSE, \n" >> $ofile
=> '"$sname" ' ,\n" >> $ofile
=> TROE,\n" » $ofile
=> l_dml_rule_name,\n" >> $ofile
=> 1 ddl rule name);\n" >> $ofile
printf "END;\n" >> Sofile printf "/\n" >> $ofile
Now create stop and start scripts
ofile=start_apply.sql
printf "BEGIN\n" > $ofile
printf "—\n" >> $ofile 2>/dev/null
printf " dbms_apply_adm.start_apply(apply_name =>
printf "—\n" >> $ofile 2>/dev/null
printf "END;\n" >> $ofile
printf "An" >> $ofile
"$dname" APPLY');\n" >> $ofile
ofile=stop_apply.sql
printf "BEGIN\n" > $ofile
printf "—\n" » $ofile 2>/dev/null
printf " dbms_apply_adm.stop_apply(apply_name => '"$dname"_APPLY');\n" » $ofile
printf "—\n" » $ofile 2>/dev/null printf "END;\n" » $ofileprintf "An" » $ofile
ofile=drop_apply.sql
printf "BEGIN\n" > $ofile
printf "—\n" >> $ofile 2>/dev/null
printf " dbms_apply_adm.delete_all_errors(apply_name => '"$dname"_APPLY');\n" >> $ofile
printf " dbms_apply_adm.drop_apply(apply_name => '"$dname"_APPLY',drop_unused_rule_sets
=> true);\n" >> $ofile
printf "—\n" >> $ofile 2>/dev/null

Macrotone Consulting Ltd
Streams Setup

39
Streams Setup

printf "END;\n" >> $ofile
printf "/\n" >> $ofile
ofile=set_apply_parameters.sql
printf "BEGIN\n" > $ofile
printf "—\n" >> $ofile 2>/dev/null
printf " dbms_apply_adm.set_parameter(apply_name => '"$dname"_APPLY',
parameter =>'DISABLE_ON_ERROR',
value => 'N');\n" >> $ofile ~
printf " dbms_apply_adm.set_parameter(apply_name => '"$dname"_APPLY',
parameter =>'PARALLELISM',
value => '4');\n" >> $ofile
printf "—\n" » $ofile 2>/dev/null
printf "END;\n" >> $ofile
printf "/\n" >> $ofile

Similar scripts have been created for the other setup steps indicated. In addition to the
prompted inputs there is a file that is required containing the list of schema.tablename pairs.

See Table 7 - Generation Scripts for details of the written scripts and their required input
parameters.

Note: The example code above has been formatted to display within this document and may
not accurately reflect the format of the actual code used.

Macrotone Consulting Ltd
Streams Setup

40
Streams Setup

5 ADDITIONAL NOTES:
5.1 Database Links

The preferred method of using database links is to initially create a public database link
and then create individual private database links using the public database name.

Strictly speaking the most secure is not to have to specify a password for the connection
at all, but this is only valid when the connection user/password is available in both source
and target database which may not be recommended.

i.e.

create public database link TGT using 'TGT';
create database link TGT connect to strmadmin identified by password;

The experiences encountered with the streams set up indicated that this preferred
mechanism did not seem to work as expected. The links worked as expected for all other
encountered situations but not for the STREAMS_ADM setup.

The reason for this is due to the configuration being based upon a RAC cluster with an
associated physical standby created by Data Guard. The naming of the each database
instance is the name of the database i.e. SRC followed by a letter indicating whether it is
the 'live' database 'X' or the physical standby by 'Y'. This gives an instance name of
'SRCX' or 'SRCY'. The fact that it is a RAC cluster results in an additional numberic
character being added to each instance name, where 1 is the first instance and "x (x is
numeric) to the instance name. i.e. SRCX1, SRCX2 etc.

The set up of the queue on the target node creates a service named
'SYS$STRMADMIN.SRC_Q1.SRC', where 'SRC_Q1 is the queue name and SRC is the
database name.

When the propagation mechanism is created it is provided with the name of the
destination queue, which is making use of the name of the database link.

i.e.

destination_queue_name => 'STRMADMIN.TGT_Q1@TGT’

Within the TNSNAMES.ORA entry for the destination database there was specification of
the database with the 'live' SERVICE_NAME of 'SRCx'. It is this service name that was
used to create the name of the service queue to connect to.

i.e.

SYS$STRMADMIN.SRC_Q1.SRCX

This connection would never work since the target queue service would not exist.

The solution was to ensure that the TNSNAMES.ORA entry specified a service of SRC,
and that such a service was indeed created and running upon the target system. This
service is required upon both the 'live' system and the 'standby' system.

For the streams propagation to work successfully it was found that a private database
link was required for the streams administrator providing all the required entry, thus not
using the public link at all.

5.2 Problems with creating capture process.
A problem may be encountered in creating the capture process. This may be due to
running transactions in the system preventing the changing of the database to
supplementary logging. This was indeed the situation encountered on one system set up
and whilst trying to discover the problem a situation was met where the capture process
set up was cancelled and in an 'incomplete state'. This manifested itself in the existence of
some of the capture objects but not all.

To resolve the problem the streams administrator was dropped from the database and
recreated. This effectively cleared up the database and removed the troublesome objects.

Macrotone Consulting Ltd
Streams Setup

41
Streams Setup

5.3 Database Recovery Scenarios
There may be circumstances where a database may be unavailable due to hardware or other
unscheduled outages. Streams implements a comprehensive set of recovery steps to ensure
that the integrity of the system is maintained when a database is recovered.

A Streams process will automatically restart after a database restart, assuming that the
process was in a running state before the database shut down. No special start-up or
shutdown procedures are required in the normal case.

However in some circumstances it may not be possible to perform a full database recovery
and a recovery to a point in time is necessary. The steps required in each situation are fully
described in the 'Oracle Streams Replication Administrators Guide B14228 Chapter 9'. The
interested reader is referred to this document for comprehensive details.

The steps to be followed will depend upon the specific problem encountered by typically
these will include the following:

 Point in time recovery on the source in a single source environment

 Point in time recovery in a multi-source environment

 Point in time recovery on a destination database

There are basically two methods that can be used.

The first involves determining the SCN numbers are the source and target database and
making changes to which ever database is 'behind' to bring the two into synchronisation. This
may involve resetting of the capture process or the creation of an additional process.

The second involves the re-instantiation of the tables, but for a large database this is not a
quick method and is not recommended unless the time difference between when the problem
occurs and the recovery of the database is large.

Please refer to the official Oracle documentation referenced above for the precise steps to be
followed for each scenario.

5.4 Queue Ordering
In 10gR2 onwards commit-time ordering is available. Each message in a commit-time queue
is ordered by an approximate commit system change number (approximate CSCN) which is
obtained when the transaction that enqueued the message commits.

The COMMIT_TIME choice is a new feature in Oracle Streams AQ 10 g Release 2 (10.2). If it is
specified, then any queue that uses the queue table is a commit-time queue, and Oracle
Streams AQ computes an approximate CSCN for each enqueued message when its
transaction commits.

If COMMIT_TIME is specified as the sort key, then the following must also be specified:

 multiple_consumers = TRUE
 message_grouping = TRANSACTIONAL
 compatible =8.1 or higher

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

5.5 Heartbeat Table
To ensure that the applied_scn of the DBA_CAPTURE view is updated periodically, one
recommendation is that a "heart beat" table is implemented. This would only be required
on a system that experiences long periods on low activity. A busy system would not
require the overhead of an additional table. The streams capture process requests a
checkpoint after every 10Mb of generated redo. During the checkpoint, the metadata for
streams is maintained if there are active transactions. Implementing a heartbeat table
ensures that there are open transactions occurring regularly within the source database
enabling additional opportunities for the metadata to be updated frequently. Additionally,

Macrotone Consulting Ltd
Streams Setup

42
Streams Setup

the heartbeat table provides quick feedback to the database administrator as to the
health of the streams replication.

5.5.1 To implement a heartbeat table:
Create a table at the source site that includes a date or timestamp column and the global
name of the database. Add a rule to capture changes to this table and propagate the
changes to each target destination. Make sure that the target destination will apply
changes to this table as well. Set up an automated job to update this table at the source
site periodically, for example every minute.

5.6 Replicating tables with extra columns
A situation was discovered during development where a table being replicated between 2
systems was found to have an additional column upon the target system. This would
obviously requires special handling. The suggested method of handling this type of
situation is described below.

The method involved in setting up the replication between the two databases is exactly
the same as that described earlier, so for that reason only the additional steps will be
documented here.

1. Create streams administrator accounts

2. Create required queues

3. Create capture rules

4. Create propagation rule

5. Instantiate the target objects so that they are the same upon both
databases.

6. Create Apply DML handler package

7. Create Apply rules

8. Start up Replication.

Of particular interest is step 6 in the above sequence. For a test environment two tables
were created upon the source database, one called SB1_ANY and one called
SB1_SPECIAL. Upon the target database the same two tables were created only they are
named SB2_ANY and SB2_SPECIAL. In addition the SB2_SPECIAL table has an
additional column named 'DELETED_Y' which is a logical delete flag. The intent is that
when a row is deleted from the source table that the change is reflected as a logical
delete upon the target table by the setting of the additional column to a 'Y' value.

The code generated is illustrated below. Note that there are two procedures within the
package. The first is named prc_sb1_rename_any and only performs a rename upon the
table object to change the table suffix from 'SB1_’ to 'SB2_’. The second procedure named
'PRC_SB1_SPECIAL not only changes the table prefix but also contains the logic to change
the delete into an update statement and set the 'DELETED_Y' column value.

PACKAGE lcr_handler_pkg
AS
 PROCEDURE prc_sbl_route (pi_lcr_anydata IN SYS.ANYDATA);
 PROCEDURE prc_sbl_rename_any (pi_lcr_anydata IN SYS.ANYDATA);
 FUNCTION fn_sbl_change_name (in_any IN ANYDATA) RETURN ANYDATA;
END lcr_handler_pkg;
/

create or replace PACKAGE BODY lcr_handler_pkg
AS
—- Description: This package is designed to handle the streams apply
—- processes that are special cased. i.e. The tables on the source
—- and on the destination are different.
— Input Parameters:
— Output Parameters:
— Error Conditions Raised:
— Author: G S Chapman
— Revision History
— Date Author Reason for Change

Macrotone Consulting Ltd
Streams Setup

43
Streams Setup

— 29 JUL 2008 G S Chapman Created.
-- 1 AUG 2008 G S Chapman Add sbl_change_name function.

 PROCEDURE prc_sbl_special (pi_lcr_anydata IN SYS. ANYDATA)
 AS

-- Procedure for handling SB2_SPECIAL table.
 l_lcr SYS.LCR$_ROW_RECORD;
 l_new_lcr SYS .LCR$_ROW_LIST;
 l_old_lcr SYS.LCR$_ROW_LIST;
 l_rc PLS_INTEGER;
 l_operation VARCHAR(2) := 'I';
 l_object_owner VARCHAR2(30);
 l_object_name VARCHAR2(30);
 BEGIN

-- Get the LCR details and change target schema owner and table name
 l_rc := pi_lcr_anydata.GetObject (l_l
 l_operation := UPPER (SUBSTR(l_lcr.get_command_type () , 1, 1)) ;
 l_object_owner := l_lcr.get_object_owner;
 l_object_name := l_lcr.get_object_name;

-— Change objects name to SB2 schema
 l_lcr.set_object_name ('SB2_' | | substr (l_object_name, 5)) ;

-— Convert DELETE to an UPDATE
 IF l_operation = 'D' THEN

-— Set old and new values to be the same.
 l_old_lcr := l_lcr .get_values ('old') ;
 l_new_lcr := l_old_lcr;
 l_lcr.set_values ('new' , l_new_lcr) ;

l_lcr.set_command_type ('UPDATE') ;

-— Add new DELETED_Y column values
-— l_lcr.add_column('old1,'DELETED_Y!,NOLL);

 l_lcr.add_column('new’,'DELETED_Y',anydata.convertvarchar2('Y'));
 END IF;
 l_lcr.execute(true);
 END prc_sbl_special;

 PROCEDURE prc_sbl_rename_any(pi_lcr_anydata IN SYS.ANYDATA)
 AS

-— Procedure for renaming any SBl_table to SB2_table.
 l_lcr SYS.LCR$_ROW_RECORD;
 l_rc PLS_INTEGER;
 l_object_nameVARCHAR2(30);
 BEGIN

-- Get the LCR details and change target schema owner and table name
 l_rc := pi_lcr_anydata.GetObject(l_lcr);

l_object_name := l_lcr.get_object_name;
-- Change object name to SB2 schema

 l_lcr.set_object_name('SB2_'||substr(l_object_name,5)); l_lcr.execute(true);
 END prc_sbl_rename_any;

 FUNCTION fn_sbl_change_name(in_any IN ANYDATA)
 RETURN ANYDATA

IS
 Icr SYS.LCR$_ROW_RECORD;
 re NUMBER;
 ob_owner VARCHAR2(30);
 ob_name VARCHAR2(30);

BEGIN
-— Get the type of object
-— Check if the object type is SYS.LCR$_ROW_RECORD
IF in_any.GETTYPENAME='SYS.LCR$_ROW_RECORD' THEN

-- Put the row LCR into Icr re := in_any.GETOBJECT(Icr);
-- Get the object owner and name

 ob_owner := Icr.GET_OBJECT_OWNER();
ob_name := Icr.GET_OBJECT_NAME();

 IF substr(ob_name, 1, 4) = 'SB1_' THEN
 Icr.set_object_name('SB2_'||substr(ob_name,5));
 END IF;
 Icr.set_object_owner('SB2');

END IF;
 RETURN ANYDATA.CONVERTOBJECT(Icr);
 END fn_sbl_change_name;
END lcr_handler_pkg;
/

The procedure is applied to the apply rules in the usual manner.

Macrotone Consulting Ltd
Streams Setup

44
Streams Setup

Notes:

1) The example code above has been formatted to display within this document and
may not accurately reflect the format of the actual code used.

2) There is an alternative manner in which the tables may be renamed and this makes
use of a transformation rule. This rule requires a function, shown in the package
above xfn_sbl_change_name'.

5.7 Adding a Global Rule to exclude certain DDL statements
There could also be a need to exclude certain DDL statements from being applied to the
Target database like Truncate Table, Grant, Alter trigger etc. This could be achieved by
adding a Global Rule on the database where CAPTURE is running. [Be aware that this
will turn supplemental logging on Primary Key, Unique Key and Foreign Key at the
database level in the SOURCE_DB i.e. implicitly execute "alter database add
supplemental log data(PRIMARY KEY.UNIQUE INDEX.FOREIGN KEY) columns" in the
Source database].

connect STRMADMIN
begin
dbms_streams_adm.add_global_rules(

streams_type => 'CAPTURE',
streams_name => 'SRC_CAPTURE',
queuejiame => 'STRMADMIN.SRC_CAPTURE_QUEUE',
include_dml => FALSE,
include_ddl => TRUE,
include_tagged_lcr => FALSE,
inclusion_rule => FALSE,
and_condition =>'(:ddl.get_command_type()=’’CREATE INDEX'’’||

‘ or :ddl.get_command_type()=’’GRANT'’’ ||
‘ or :ddl.get_command_type()=’’TRUNCATE TABLE’’’||
' or :ddl.get_command_type()=’’ALTER TRIGGER’’’"||')’);

end;

5.8 Excluding Columns in Capture
There may be a need to replicate a table but exclude a specific
column. This can be achieved by the use of a specific rule. In the
following example a BLOB column is excluded from the capture
process.

BEGIN
 DBMS_STREAMS_ADM.DELETE_COLUMN(
 rule_name =>
'STRMADMIN.DELETE_COLUMNS',
 table_name =>
'SCOTT.WITH_BLOB',
 column_name => 'BLOB_DATA',
 value_type => '*',
 step_number => 0,
 operation => 'ADD');
END;
/

Where the rule name is assumed to be ‘DELETE_COLUMNS’. To
determine the specific rule name in use it is necessary to perform a
select upon the DBA_RULE table. Remember that if the capture
database is also propagation that there will be double the number of

Macrotone Consulting Ltd
Streams Setup

45
Streams Setup

rules that might be expected. It is only necessary to apply the rule to
the ‘CAPTURE’ process.

Macrotone Consulting Ltd
Streams Setup

46
Streams Setup

A1 STREAMS UTILITY PACKAGE
A utility package has been written and is usually located under the Streams
Administration user. This package named STRMUTIL_PKG consists of a number of
procedures to avoid having to have a number of individual scripts around. The
procedures are described in the table below.

Procedure Name Input
Parameters

Parameter
Description

Comments

prc_stop_capture p_capture_name IN VARCHAR2
DEFAULT NULL

If the input parameter is
specified stop the specified
capture process if it is
enabled. If no input
parameter is specified stops
all capture processes running
upon the database that are
enabled.

prc_stop_apply p_apply_name IN VARCHAR2
DEFAULT NULL

If the input parameter is
specified stop the specified
apply process if it is enabled.
If no input parameter is
specified stops all apply
processes running upon the
database that are enabled.

prc_start_capture p_capture_name IN VARCHAR2
DEFAULT NULL

If the input parameter is
specified stop the specified
capture process if it is
disabled. If no input
parameter is specified starts
all capture processes upon
the database that are
disabled.

prc_start_apply p_apply_name IN VARCHAR2
DEFAULT NULL

If the input parameter is
specified stop the specified
apply process if it is disabled.
If no input parameter is
specified starts all apply
processes upon the database
that are disabled.

prc_instantiate p_dbname IN VARCHAR2
DEFAULT 'EBA'

Instantiates all objects
defined in the streams rules
upon the connected
database.
NOTE: If no input parameter
is supplied a default
database name of EBA is
assumed.

p_owner IN VARCHAR2prc_add_ct_cols

p_table_name IN VARCHAR2

When provided with a
valid owner and table
name will add the
additional columns
required for the Change
Capture apply process.

prc_stop_propagation p_prop_name IN VARCHAR2
DEFAULT NULL

If the input parameter is

Macrotone Consulting Ltd
Streams Setup

47
Streams Setup

Procedure Name Input
Parameters

Parameter
Description

Comments

p_owner IN VARCHAR2
DEFAULT
‘STRMADMIN’

specified stop the
specified propagation if it
is enabled. If no input
parameter is specified
stops all propagation
processes running
upon the database
that are enabled.

p_prop_name IN VARCHAR2
DEFAULT NULL

prc_start_propagation

p_owner IN VARCHAR2
DEFAULT
‘STRMADMIN’

If the input parameter is
specified stop the
specified propagation
process if it is disabled.
If no input parameter is
specified starts all
propagation processes
upon the database that
are disabled.

Table 6 - STRMUTIL_PKG procedures.
This package may evolve over time so please check the version installed upon the database
that is being used.

Macrotone Consulting Ltd
Streams Setup

48
Streams Setup

A2 GENERATION SCRIPTS
A number of UNIX scripts have been written to automate the generation of SQL scripts to
create the Streams entries. An example of one of the scripts is shown in section 4.

Script Name Inputs Defaults (see
Note 3)

Comments

Source database name SRC

Destination database name TGT

Streams administration user STRM ADMIN

Source schema name SB1

gen_apply_schema_scr

Destination schema name SB2

Creates a script named
'apply.sql' for 'basic' schema
replication apply.

Source database name SRC

Destination database name TGT

Streams administration user STRMADMIN

Source schema name SB1

Destination schema name SB2

gen_apply_tables_scr

Input file name Filelist

Creates a script named
'apply.sql' to create the 'basic'
application for the replicated
tables

Source database name SRC

Streams administration user STRMADMIN

Source schema name SB1

Target database name TGT

gen_capture_tables_scr

Input file name Filelist

Creates a script named
'capture.sql' for the capture of
tables. Note: Source schema
name is provided only in case
the schema is not specified in
the input file. Target database
name is used to create
instantiate script.

Source database name SRC

Streams administration user STRMADMIN

Source schema name SB1

gen_capture_schema_scr

Target database name TGT

Creates a script named
'capture.sql' for the capture of
all tables of the specified
schema. Target database
name is used to create
instantiate script.

Source database name SRC

Destination database name TGT

Streams administration user STRMADMIN

User procedure CDC
HANDLER
PKG
.INSERT_CT

gen_cdc_apply_tables_scr

Input file name Filelist

Creates a script named
'cdc_apply.sql' for the CDC
table rules. Assuming no
schema renaming is required.

Source database name SRC

Destination database name TGT

Streams administration user STRMADMIN

gen_cdc_apply_schema_scr

Source schema SB1

Creates a script named
'cdc_apply.sql' for the CDC
table rules. Assuming schema
renaming is required.

Macrotone Consulting Ltd
Streams Setup

49
Streams Setup

Script Name Inputs Defaults (see
Note 3)

Comments

Destination schema SB2

User procedure CDC
HANDLER
PKG
.INSERT_CT

Input file name Filelist

Source database name SRC

Destination database name TGT

Source schema SB1

gen_propagation_scr

Streams administration user STRMADMIN

Generates script named
'propagation. sql' to create
propagation rules

Source database name SRC

Destination database name TGT

gen_queue_scr

Streams administration user STRMADMIN

Generates two scripts named
'src_queue.sql' and
dest_queue.sql' to create
queues on both source and
destination database.

run_impdp None N/A Script to read the parameter
files (PARFILE1, PARFILE2 or
PARFILE) to load the target
database objects

Table 7 - Generation Scripts

Notes:

 For those scripts that accept a file as a parameter, the file should be formatted as a
simple text file, with one entry per line, left justified, and each entry will comprise a
schema name, followed by a full stop and then the table name.

i.e. AAA.TABLE_ONE

BBB.TABLE_TWO

 If the schema name and full stop are not specified the table name will be assumed to
be as specified by the source schema, where this has been provided as an option.

 Where more that one schema is to be propagated, some of the scripts need to be
run more than once. An example would be the gen_propagation script. After running
once for a specific schema, one should run the generated output script into the
database. Then rerun the generation script again for the next schema, repeating the
running of the generated output script into the database. See the readme.txt file in
each directory for more details.

 The defaults provided above will vary depending upon which configuration is being
set up. The default values reflect the expected databases which will be involved in
the Streams replication.

 The run_impdp script reads supplied parameter files. These parameter files need
editing to ensure that the correct mapping of schemas is performed when loading
the tables into the target database from the source database when first setting up
the configuration.

Macrotone Consulting Ltd
Streams Setup

50
Streams Setup

A3 USAGE OF WRITTEN SCRIPTS.
To set up the Streams Replication environment the following scripts need to be run:

1. Configure database initialisation parameters on both source and target
databases

2. Create streams administrator on both Source and Target databases.
3. Run 'gen_queue_scr' script described above to create two scripts that are then

run. One upon the source database and the second on the target database.
4. As the streams administrator, create a database link between the source and the

target database from the source database.
5. As the streams administrator run the strmutil_pkg script to create the Streams

utility package. Permissions to use the package need to be granted when it is
determined who needs access.

6. Run the 'gen_propagation_scr' script to create the 'propagation.sql' which is then
run on the source database. If more than one schema is involved run the script
multiple times providing the details of each required schema to be propagated.

7. Run the alter_propagation script to change the propagation processing
parameters.

8. Run the 'gen_capture_tables_scr' script or the gen_capture_schema_scr script
to create the capture.sql script which is then run on the source database. The
script to run will depend upon whether an entire schema is being captured or
specific tables. It is possible of course that both, might apply, in which case run
one, and then execute the capture.sql script in the database, before running the
second.

9. Run the alter_capture script to change the processing parameters.
10. Run the 'gen_apply_scr' OR the 'gen_apply_schema_scr' script to create the

apply.sql script which is then run upon the target database. The choice of script
will depend upon the number of tables involved. If multiple schemas are involved
run for each schema supplying the required parameters each time.

11. Run the set_apply_parameters script to change apply processing parameters.
12. If Change tables are not being created from the LCR records go to step 16 below.
13. Create the CDC insert package upon the target database.
14. Run the 'gen_cdc_apply_scr' script to create the cdc_apply.sql script which can

then be run upon the target database.
15. Run the set_cdc_apply_parameters script to change the cdc apply processing

parameters.
16. Load the target database with all base tables which are being replicated. The

impdp command is most useful for small schemas.
17. Run the 'instantiate.sql' script which was created in step 8 above on the source

database.
18. If schema capture is being used then run the exclusion.sql script on the source

database. This was created in step 8 above.
19. Run the start apply processes for both the normal apply and the cdc_apply on the

target database.
20. Run the start capture process upon the source database.
21. Run the start propagation process upon the source database.

Macrotone Consulting Ltd
Streams Setup

51
Streams Setup

A4 UPDATE RELEASE CHANGES
A new release of the application will often involve the creation of modification of a
number of tables. New tables may be created, old ones removed and other may be
modified. Each of these changes will require a number of steps to be performed. These
can be described broadly as below:

1. Bring the databases to a quiet state with no other user activity being performed.

2. Ensure all capture and apply operations have been completed.

3. Stop the capture process

4. Stop the propagation process

5. Stop the apply process(es).

6. Create any new tables on both the source and target databases.

7. Modify any tables which require the adding or removal of columns or definitions
as appropriate.

8. If schema propagation in being used there is nothing more to do with
propagation. If table propagation is being used, add the new tables to the
propagation rules, and remove and deleted tables from the propagation rules.

9. Change the capture rule to add any new tables required to be replicated and
remove any tables which will no longer exist.

10. If a table apply run is being used then add the new tables to the rule, and remove
any un-required or deleted tables from the rule.

11. If a Change capture rule is being used, modify the rule to add or remove tables as
appropriate.

12. In the event of a change to the Change capture table structure, modify the
change table and also the change package procedure as appropriate.

13. Instantiate all new tables and modified tables so that the source and target
databases are synchronised. One may want to instantiate all objects.

14. If a new schema is being introduced, modify propagation and apply rules to add
the details of the new schema.

15. Start up the propagation process

16. Start up the apply process

17. Start up the capture process

Macrotone Consulting Ltd
Streams Setup

52
Streams Setup

A5 ADDING A FEW TABLES TO THE REPLICATION.
There is a need sometimes to add extra tables to an existing streams replication setup.
This is a reasonably common occurrence in the development environment. This readme
describes the steps to be performed.

1. Identify the tables to be added.

2. Stop the apply process on the target database.

3. Stop the capture process on the source database.

4. Ensure that there is an up to date copy of the table(s) on the target database. A
simple CTAS [Create table as Select] statement is usually sufficient for a single
or very few tables.

5. Create an instantiation script to run on the source database for the table(s).

6. IF this is a table capture, create a small script to add the new table(s) to the
capture process.

7. IF this is a schema capture there is no need to do anything special.

8. Restart the capture process

9. Restart the apply process.

10. Check that the propagation process is running.

11. Add the select table grants to the schema role on the target database.

12. Create a synonym for the accessor schema for the new table(s).

13. Check everything is working OK

14. All done.

Macrotone Consulting Ltd
Streams Setup

53
Streams Setup

Issues and Advanced Topics

A6 HANDLING APPLY SPILL
A problem has been encountered that resulted in the apply process being blocked. This
resulted in a large amount of disk space being occupied by the Apply Spill files. The
following is obtained from Oracle and describes how the Apply Spill areas are purged in
Oracle Release 10.2.

A6.1 Apply Spill (10.2)
Apply Spillover, introduced in 10.2, allows Streams to handle large transactions and long
running transactions. A large transaction is a transaction with more than 10000 Logical
Change Records (LCRs). The size of a large transaction can be set by the user via the
apply parameter TXN_LCR_SPILL_THRESHOLD. LCRs will start to spill to the apply
spill table when the number of LCRs in the transaction reaches the value of
TXN_LCR_SPILL_THRESHOLD. The apply spill table is located by default in SYSAUX
and uses a partitioned table to store the LCRs. Each transaction is a separate partition of
the table (the key is apply_name and transaction id). When a transaction has been
applied and it is time to remove the LCRs for that transaction, a drop partition is
performed for the transaction id. This is a very quick operation and the space in SYSAUX
is returned. If an error should occur while applying the transaction, the transaction will
remain in the apply spill table and be marked as an error.

A6.2 Purging Apply Spill
Note this procedure should only be used under the guidance of Support. Purging a
transaction from the apply spill table can result in data inconsistencies in the user tables
(ORA-1403 or other apply errors). This should not be done unless the customer
completely understands the impact of this action. When the fix for unpublished Bug
5736709 is implemented _ignore_transaction will be sufficient to ignore any kind of
transaction whether it is spilled or not.

To purge a transaction from the apply spill table, use the following process

1. Obtain the PLB file: streams_purge_apply_spill_txn.plb from Oracle. Note that
this is not available except upon specific request.

2. Load this procedure into the SYS schema for the target database using sqlplus.
This creates the procedure purge_spill_txn in the SYS schema.

connect / as sysdba @streams_purge_apply_spill_txn.plb
The procedure signature is

purge_spill_txn(apply_name , ignore_txn_id , delete_only)

where the parameters have the following meaning:

apply_name> is the name of the apply process for the spilled transaction to be
ignored.

ignore_txn_id :- is the transaction id of the spilled transaction.This transaction id
must also be listed in the _ignore_transaction parameter of the apply process.

delete_only :- is a boolean value. The default is FALSE which will drop the
partition of the spilled transaction. Set to TRUE if you just want to remove the
spilled transaction.

3. Check the DBA_APPLY_SPILL_TXN view to identify the transaction id to
remove

select apply_name, xidusn]|'.'||xidslt||'.'||xidsqn
txn_id, first_scn, first_message_create_time,
message_count, spill_creation_time
from dba_apply_SPILL_TXN;

Macrotone Consulting Ltd
Streams Setup

54
Streams Setup

4. Stop all apply processes. For this example, we have one apply process and the apply
name is APP_TEST.

exec dbms_apply_adm.stop_apply('APP_TEST');

5. Set the apply parameter _IGNORE_TRANSACTION with the relevant transaction id
from step 3.

For this example, the transaction id is 10.22.333.

exec dbms_apply_adm.set_parameter('APP_TEST',
'_ignore_transaction','10.22.333');

6. Run the purge_spill_txn procedure supplying the apply name and the transaction id.

exec sys.purge_spill_txn('APP_TEST', '10.22.333');

7. Check the DBA_APPLY_SPILL_TXN view to confirm that the transaction has been
removed.

SELECT * FROM DBA_APPLY_SPILL_TXN
where transaction_id = '10.22.333';

8. Clear the transaction id from the apply parameters

exec dbms_apply_adm.set_parameter('APP_TEST',
'_ignore_transaction',null);

9. Restart all the apply processes

exec dbms_apply_adm.start_apply('APP_TEST');

Macrotone Consulting Ltd
Streams Setup

55
Streams Setup

A7 PROBLEMS RESTARTING CAPTURE PROCESS
A problem was encountered restarting a Capture process. The symptoms were that the
capture process appeared stuck in the step of mining the redo logs.

The information given here is extracted from Metalink Note 471695.1 and can also be
used to move forward past a missing logfile.

A new Capture process can start from an existing Streams Dictionary build or from a new
build. If no explicit build is performed, creating a Capture process will perform this
operation implicitly.

In order to determine the Steams Dictionary builds that exist issue:

column first_change# heading 'First SCN' format 9999999999999
column next_change# heading 'First SCN' format 9999999999999
column name heading 'Log File Name' format A50

select distinct first_change#,next_change#, name
from v$archived_log
where dictionary_begin = 'YES'
order by first_change#;

If a Dictionary build is available, the first_change# of the related log can be used as
the first_scn value (step 2 is therefore not necessary) as detailed in step 4 below.
The Steps to recreate the Capture process are as follows:

1. Drop the current capture process:

First of all record relevant information which should be
considered in step 4 below.

select queue_name, capture_name, rule_set_name, rule_set_owner,
 source_database,negative_rule_set_name,
negative_rule_set_owner, checkpoint_retention_time

from dba_capture queue_name = '<queue name>'
and queue_owner = '<owner>';

(Note: column checkpoint_retention_time is not present in 10.1).

then drop the capture process :

exec dbms_capture_adm.stop_capture('<capture name>');
exec dbms_capture_adm.drop_capture('<capture name>');

2. Generate a new dictionary dump in the current log :
set serveroutput on
declare
 sen number;
begin
 dbms_capture_adm.build(first_scn => sen);
 dbms_output.put_line('First SCN Value = ' || sen);
end;
/

Note: please record the first SCN Value.

3. Ideally, database objects should be prepared for instantiation after a build is
performed.

Run one or more of the following procedures in the dbms_capture_adm
package to prepare database objects for instantiation:

Macrotone Consulting Ltd
Streams Setup

56
Streams Setup

prepare_global_instantiation

prepare_schema_instantiation

prepare_table_instantiation

1. Create the capture

process, e.g. :

2.
begin
dbms_capture_adm.create_capture(
queue_name => '<queue owner>.<queue name>',
capture_name => '<capture process name>',
rule_set_name => '<exiting ruleset used by capture process>',
first_scn => &no, — <enter the value for the first scn>);
end;
/

The above is an example. You should also consider whether details from
Step 1 are also relevant: negative ruleset, etc.

5. If required, re-instantiate the replicated tables at the destination, either manually using exp/imp
or expdp/impdp and then setting the correct instantiation sen using:

dbms_streams_adm.set_<table|schema>_instantiation_scn().

Ensure that the flashback_scn on export / import is the same as that used on the relevant
dbms_streams_adm.set_<table|schem> instantiation_scn() call. This will ensure that the
destination database will only apply changes after the instantiation sen. The sequence is
therefore as follows :

on the source database
column inst_scn format 9999999999999
select dbms_flashback.get_system_change_number() inst_scn from dual;

move the data across ; use the inst_scn as the flashback_scn on export export / import data

against the target database; use the inst_scn as the instantiation_scn: use
dbms_apply_adm.set_schema_instantiation_scn /
dbms_apply_adm.set_table_instantiation_scn

6. Restart the Apply process first then start the new Capture process.

Macrotone Consulting Ltd
Streams Setup

57
Streams Setup

A8 KNOWN PROBLEMS WHEN REMOVING STREAMS
CONFIGURATION
10.1 introduced the procedure dbms_streams_adm.remove_streams_configuration to simplify the Streams
cleanup. This procedure removes the Streams configuration at the local database. In addition, doing a DROP
USER... CASCADE will work, as long as you have stopped the Streams processes. However there are still
some elements of the configuration that remain even after running these steps. These are listed below:

1) DML Handlers are not removed

After running dbms_streams_adm.remove_streams_configuration and dropping the streams administrator
(STRMADMIN), the apply handlers are still seen in dba_apply_dml_handlers.

These are known bugs which as far as I can tell still seem to be present in 10.2.0.4:

Bug 4772753 REMOVE_STREAMS_CONFIGURATION DOES NOT REMOVE DML HANDLERS

Bug 2284725 NEED TO REMOVE ROWS FROM DICTIONARY VIEW WHEN DML HANDLE IS
NULLED OUT

2) Buffered Queue and Agents not cleared

The remove_streams_configuration package leaves entries for: Streams Buffered Queue History for last
day Streams Buffered Subscriber History for last day Agents Agent Privileges

The Agents can be removed by using the DBMS_AQADM.DISABLE_DB_ACCESS or
DBMS_AQADM.DROP_AQ_AGENTS procedures. The history information is stored as part of the
workload repository snapshots. The retention is controlled by using the
DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS.

3) Entries for dbms_apply_adm.compare_old_values dba_apply_table_columns still show values.

The DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER procedure can be used to set the
method_name to NULL with the originally specified object_name, columnjist, and resolution_column
removed methods. If NULL, then the procedure removes any existing update conflict handler with the same
object_name, resolution_column, and columnjist. If non-NULL, then the procedure replaces any existing
update conflict handler with the same object_name and resolution_column.

Macrotone Consulting Ltd
Streams Setup

58
Streams setup

A9 USING STREAM TAGS
There may be a need to perform some DML (or DDL) activities upon a source database for which
there is a desire to prevent the action from being 'applied' upon the target database. Streams
provides the ability to do this but the use of 'stream tags' which get applied to the LCR record.

By default streams are set up to ignore any tags upon LCR records. The main use of tags is in a
multiple database environment where changes get replicated to two or more other database. In
these situations it is important that changes only get applied once at each database.

It is possible to set or get the value of the tags generated by the current session or by an apply
process. The main interest here is for the setting of a tag at the current session.

A9.1 Setting the Tag Values Generated by the Current Session
You can set the tag for all redo entries generated by the current session using the SET_TAG
procedure in the DBMS_STREAMS package. For example, to set the tag to the hexadecimal value of
' ID ' in the current session, run the following procedure:

BEGIN
 DBMS_STREAMS.SET_TAG(tag => HEXTORAW('ID')};
END;
/

After running this procedure, each redo entry generated by DML or DDL statements in the current
session will have a tag value of ID. Running this procedure affects only the current session.

The following are considerations for the SET_TAG procedure:

 This procedure is not transactional. That is, the effects of SET_TAG cannot be rolled back.

 If the SET_TAG procedure is run to set a non-NULL session tag before a data dictionary
build has been performed on the database, then the redo entries for a transaction that
started before the dictionary build might not include the specified tag value for the
session. Therefore, perform a data dictionary build before using the SET_TAG procedure
in a session. A data dictionary build happens when the DBMS_CAPTURE_ADM. BUILD
procedure is run. The BUILD procedure can be run automatically when a capture process
is created.

A9.2 Getting the Tag Value for the Current Session
You can get the tag for all redo entries generated by the current session using the GET_TAG
procedure in the DBMS_STREAMS package. For example, to get the hexadecimal value of the tags
generated in the redo entries for the current session, run the following procedure:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2048);
BEGIN
 raw_tag := DBMS_STREAMS.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You can also display the tag value for the current session by querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;
A9.3 Example using Tags

The following example illustrates a real situation where the insert of the employee with a number of
1000 is not replicated from the source to the target database.

Macrotone Consulting Ltd
Streams Setup

59
Streams setup

begin
 dbms_streams.set_tag(tag => hextoraw('ID'));
 insert into scott.emp
 values (1000,'ZZZZ',lMGRl,7521,sysdate,1000,NULL,10);
 dbms_streams.set_tag(tag => null);
 insert into scott.emp
 values (1001,’YYYY',’MGR',7251.sysdate, 10OO.NULL, 10);
 commit;
end;
/

Macrotone Consulting Ltd
Streams Setup

60
Streams setup

A10 EXAMPLE OF DROPPING COLUMNS AND STREAMS IN A
SINGLE DATABASE
The following example illustrates two specific aspects of streams replication. The first is
the replication with a single database. It shows a simple table copy from one schema to
another. The second aspect is the dropping of a column in a table that is being
replicated. The removal of the column is performed on the capture side so that the
column data is not replicated. The chosen column is in this example a BLOB, but could
be any of the permitted data types.

-- Create users
create user geoffc1 identified by abcd;
grant resource to geoffc1;
create user geoffc2 identified by abcd;
grant resource to geoffc2;

-- Create test tables
CREATE TABLE geoffc2.with_blob (a NUMBER PRIMARY KEY,
 c VARCHAR2(20));

CREATE TABLE geoffc1.with_blob (a NUMBER PRIMARY KEY,
 b BLOB,
 c VARCHAR2(20));

CREATE TABLE geoffc2.without_blob (a NUMBER PRIMARY KEY,
 c VARCHAR2(20));

CREATE TABLE geoffc1.without_blob (a NUMBER PRIMARY KEY,
 c VARCHAR2(20));

-- Create queues
BEGIN
 dbms_streams_adm.set_up_queue(
 queue_table => 'GEOFF_QT_2A',
 queue_name => 'GEOFF_CAPTURE_QUEUE',

 queue_user => 'STRMADMIN');

 dbms_streams_adm.set_up_queue(
 queue_table => 'GEOFF_QT_2B',
 queue_name => 'GEOFF_APPLY_QUEUE',
 queue_user => 'STRMADMIN');
END;
/

-- Check the queues are set up
select * from dba_queues;

-- Set up propagation process rule
BEGIN
 dbms_streams_adm.add_schema_propagation_rules(
 schema_name => 'GEOFFC1',
 streams_name => 'GEOFF_INTERNAL',
 source_queue_name => 'STRMADMIN.GEOFF_CAPTURE_QUEUE',
 destination_queue_name => 'STRMADMIN.GEOFF_APPLY_QUEUE',
 include_dml => TRUE,
 include_ddl => FALSE,
 source_database => 'EBR',
 inclusion_rule => TRUE,
 queue_to_queue => TRUE);
END;

Macrotone Consulting Ltd
Streams Setup

61
Streams setup

/
-- Set up the apply process
DECLARE
 l_dml_rule_name all_rules.rule_name%TYPE;
 l_ddl_rule_name all_rules.rule_name%TYPE;
BEGIN
 dbms_streams_adm.add_schema_rules(
 schema_name => 'GEOFFC1',
 streams_type => 'APPLY',
 streams_name => 'GEOFF_APPLY',
 queue_name => 'STRMADMIN.GEOFF_APPLY_QUEUE',
 include_dml => TRUE,
 include_ddl => FALSE,
 source_database => 'EBR',
 inclusion_rule => TRUE,
 dml_rule_name => l_dml_rule_name,
 ddl_rule_name => l_ddl_rule_name);
 dbms_streams_adm.rename_schema(
 rule_name => l_dml_rule_name,
 from_schema_name => 'GEOFFC1',
 to_schema_name => 'GEOFFC2');
END;
/
-- Create the capture rules.
BEGIN
 dbms_streams_adm.add_table_rules(
 table_name => 'GEOFFC1.WITH_BLOB',
 streams_type => 'CAPTURE',
 streams_name => 'GEOFF_CAPTURE',
 queue_name => 'STRMADMIN.GEOFF_CAPTURE_QUEUE',
 include_dml => TRUE,
 include_ddl => FALSE,
 inclusion_rule => TRUE);

 dbms_streams_adm.add_table_rules(
 table_name => 'GEOFFC1.WITHOUT_BLOB',

 streams_type => 'CAPTURE',
 streams_name => 'GEOFF_CAPTURE',
 queue_name => 'STRMADMIN.GEOFF_CAPTURE_QUEUE',
 include_dml => TRUE,
 include_ddl => FALSE,
 inclusion_rule => TRUE);
END;
/

-- Instantiate the objects.
DECLARE
vIscn NUMBER;
BEGIN
 vIscn := dbms_flashback.get_system_change_number();
 dbms_apply_adm.set_table_instantiation_scn(
 source_object_name => 'GEOFFC1.WITH_BLOB',
 source_database_name => 'EBR',
 instantiation_scn => vIscn);
END;
/

DECLARE
vIscn NUMBER;
BEGIN

Macrotone Consulting Ltd
Streams Setup

62
Streams setup

 vIscn := dbms_flashback.get_system_change_number();
 dbms_apply_adm.set_table_instantiation_scn(
 source_object_name => 'GEOFFC1.WITHOUT_BLOB',
 source_database_name => 'EBR',
 instantiation_scn => vIscn);
END;
/
-- Determine which rule has to have the delete column applied to.
select rule_name, rule_condition from dba_rules;

-- Add the rule to delete the column to the capture process.

-- We will assume that the rule has been determined as WITH_BLOB82 from the select
script
-- just run.
-- If not modify the following code to ensure that the correct rule is specified.
BEGIN
 DBMS_STREAMS_ADM.DELETE_COLUMN(
 rule_name => 'STRMADMIN.WITH_BLOB82',
 table_name => 'GEOFFC1.WITH_BLOB',
 column_name => 'B',

value_type => '*',
 step_number => 0,
 operation => 'ADD');
END;
/

-- We can now start up the apply and capture processes.
BEGIN
 dbms_apply_adm.start_apply(apply_name => 'GEOFF_APPLY');
END;
/

BEGIN
 dbms_capture_adm.start_capture(capture_name => 'GEOFF_CAPTURE');
END;
/

-- Check the capture view until the state changes to ‘CAPTURING CHANGES’.
-- This may take a short while.
select * from gv$streams_capture;

-- Now we can start putting data into the tables.

select * from gv$streams_capture;

-- Now insert some real data into the source tables.

insert into geoffc1.without_blob
values (3, 'Test 3');

insert into geoffc1.with_blob
values (1, empty_blob(), 'Test 1');

insert into geoffc1.with_blob
values (2, empty_blob(), 'Test 2');

-- Check the results

Macrotone Consulting Ltd
Streams Setup

63
Streams setup

select * from geoffc2.with_blob;
select * from geoffc1.with_blob;

select * from geoffc2.without_blob;
select * from geoffc1.without_blob;

-- The inserted data should now be visible in the GEOFF2 schema tables.

-- Clean up after our test.
BEGIN
 dbms_apply_adm.stop_apply(apply_name => 'GEOFF_APPLY');
END;
/

BEGIN
 dbms_capture_adm.stop_capture(capture_name => 'GEOFF_CAPTURE');
END;
/

BEGIN
 dbms_propagation_adm.stop_propagation(propagation_name =>
'GEOFF_INTERNAL');
END;
/
BEGIN
 dbms_capture_adm.drop_capture(capture_name =>
'GEOFF_CAPTURE',drop_unused_rule_sets => true);
END;
/

BEGIN
 dbms_apply_adm.delete_all_errors(apply_name => 'GEOFF_APPLY');
 dbms_apply_adm.drop_apply(apply_name =>
'GEOFF_APPLY',drop_unused_rule_sets => true);
END;
/

BEGIN
 dbms_propagation_adm.drop_propagation(
 propagation_name => 'GEOFF_INTERNAL',
 drop_unused_rule_sets => true);
END;
/

BEGIN
 dbms_streams_adm.remove_queue(
 queue_name => 'GEOFF_CAPTURE_QUEUE',
 cascade => TRUE,
 drop_unused_queue_table => TRUE);

 dbms_streams_adm.remove_queue(
 queue_name => 'GEOFF_APPLY_QUEUE',
 cascade => TRUE,
 drop_unused_queue_table => TRUE);
END;
/

Macrotone Consulting Ltd
Streams Setup

64
Streams setup

A11 TRACING STREAMS
To trace the propagation process use the following event code:

Event 24040 is used for tracing the propagator.

Level 1 - Trace unexpected events (e.g. rejecting expired msgs, errors)
Level 2 - 1 plus Trace entry and exit from C callout
Level 3 - 2 plus trace result from each loop to send messages
Level 8 - 7 plus trace TOIDs of target qs when fetched from dictionary
Level 9 - 8 plus trace all of propagation' target queues
Level 10 - 9 plus trace message ids dequeued locally and enqueued remotely

Macrotone Consulting Ltd
Streams Setup

65
Streams setup

High Availability Deployment

A12 DEPLOYING STREAMS IN A HIGH AVAILABILITY
ARCHITECTURE.

The following considerations must be taken into account while deploying stream in high
availability architecture.
• As standby by database is an exact duplicate of primary database, so it must be setup

with all aspects of a Streams configuration such as capture process, propagation rules,
and apply services.

• In order to provide seamless replication through the switchover, the source primary and
standby hosts must have identical Oracle Net configuration files (tnsnames.ora). This
assures that all dblinks used by the Streams configuration can correctly resolve Oracle
Net service names.

• A Streams configuration requires supplemental logging. The same supplemental
logging that exists on the primary must be enabled on the physical standby.

a) To verify the current state of supplemental logging on the standby run the
following query:

SELECT supplemental_log_data_min,
supplemental_log_data_pk,
supplemental_log_data_ui,
supplemental_log_data_fk,
supplemental_log_data_all

FROM v$database;

b) If the supplemental logging was enabled at the Primary after the Physical standby was
created then enable supplemental logging at the database level as follows:

ALTER DATABASE ADD SUPPLEMENTAL LOG
DATA (PRIMARY KEY.UNIQUE INDEX.FOREIGN KEY.ALL) COLUMNS;

c) Table level supplemental logging does generate redo and will be sent to the physical
standby. To verify table logging run the following query on primary and standby
instance.

SELECT owner,
table_name,
log_group_name,
log_group_type,
always,
generated

FROM all_log_groups;

Note: Refer to the 'Streams Setup' guide for more information.

A12.1 Procedure to recover from a Streams destination failure

This procedure provides guide lines as to how to deal with situation of any accidental outage or
catastrophic failure of a Streams destination database. To deal with this situation if a business
decision requires a role transition, then we need to make sure that all streams source and

Macrotone Consulting Ltd
Streams Setup

66
Streams setup

destination are moved over to the DR site using the appropriate switchover and failover
procedures described earlier.

This situation needs the following action:

a) Perform failover operation on Streams destination database.

b) Perform switchover operation on Streams source database.

A12.2 Perform the following steps to recover a Streams destinations
failure.

Streams Destination Failover to DR site

1 Performs Streams
destination failover.
Note: After a successful
failover, the streams
destination standby
database transitions to the
primary role and old primary
becomes new standby.

Follow the generic failover procedure described earlier to switch Streams
Destination database.

2 Verify the status of
propagation on the Streams
source database.

Login as streams administrator on the source database and check the
status as follows:

connect STRMADMIN/<Password>

SELECT propagation_name,status
 FROM dba_propagation;

3 Stop propagation on the
source database if already
enabled.

Note:
If any problem encountered
the propagation should be
dropped.

Login as streams administrator on the source database and stop
propagation.

connect STRMADMIN/<Password>

execdbms_propagation_adm.stop_propagation
(propagation_name => '<propagation Name>');

Note:
If there are problem stopping propagation, then it can be dropped as
follows:
EXECdbms_propagation_adm.drop_propagation
(propagation_name => '<Propagation Name>',
drop_unused_rule_sets => TRUE);

4 Perform a query on the new
destination database to
determine the highest
applied SCN (oldest
message number) and make
a note of it.

Note:
HIGHEST APPLIED SCN:

Login as stream administrator on the new destination and
determine the highest applied SCN.

SELECT oldest_message_number
FROM dba_apply_progress;

Macrotone Consulting Ltd
Streams Setup

67
Streams setup

Streams Destination Failover to DR site

5 Stop the capture process on
the source database if
enabled.

Login as stream administrator on the source database and stop the capture
process as follows:

connect STRMADMIN/<Password>

• Verify the status of the capture process as follows:
SELECT capture_name,status
FROM dba_capture;

• If capture process is already enabled then stop the capture process as
follows:

EXEC dbms_capture_adm.stop_capture (
capture_name => '<Capture Name1);

6 Reset the start SCN for the
capture process on source
database to the HIGHEST
APPLIED SCN value noted in
step-4.

Login as stream administrator on the source database and reset the start
SCN of capture process as follows:

EXEC dbms_capture_adm.alter_capture (
capture name => '<Capture Name>',
start_scn => < HIGHEST APPLIED SCN in step 4>);

Streams Source switchover to DR site
7 Perform a switch over of the

Streams source primary
database. Note: After a
successful switchover, the
streams source standby
database transitions to the
primary role and old primary
becomes new standby.

Follow the generic switchover procedure described earlier to switch
Streams Source.

Macrotone Consulting Ltd
Streams Setup

68
Streams setup

Streams Destination Failover to DR site

8 Start the propagation process
on the new source. If the
propagation has been
dropped then it needs to be
re-created.

Login as stream administrator on the source database and start the
propagation process as follows:

connect STRMADMIN/<Password>
exec dbms_propagation_adm.start_propagation
(propagation_name => '<Propagation Name>');

If the propagation has been dropped then it needs to be recreated as
follows:
BEGIN

dbms streams adm.add table_propagation_rules(
table_name => '<SCHEMA>.<TABLE NAME>',
streams_name => '<Stream Name>',

source_queue_name =>
'<Stream Administrators <Source Queue Name>',
destination_queue_name =>
'<Stream Administrators destination Queue Name>@<DBLINK>',
include dml =>TRUE,
include_ddl => FALSE,
source_database => '<Source Database>',
inclusion_rule => TRUE,
queue to queue => TRUE);

END;
/9 Start Capture process on the

new source database.
Login as stream administrator on the source database and start the
capture process as follows:

connect STRMADMIN/<Password>
EXEC dbms_capture_adm.start_capture

(capture_name => '<Capture Name>');

Macrotone Consulting Ltd
Streams Setup

69
Streams setup

Streams Destination Failover to DR site

10 Instantiate the object if
necessary

connect STRMADMIN/password@SRC

DECLARE
iscn NUMBER; — Variable to hold instantiation SCN value

BEGIN
iscn :=

DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_DUTPUT.PUT_LINE ('Instantiation SCN is:' || iscn);

-- Instantiate the objects at the destination database with this SCN
value.

DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@TGT
(
source_object_name => '<SCHEMA>.<TABLE NAME>',
source_database_name => '<Source Database Name>',
instantiation_scn => iscn

);
END;

Macrotone Consulting Ltd
Streams Setup

70
Streams setup

A13 PROCEDURE TO RECOVER FROM A STREAMS SOURCE
FAILURE
This procedure provides guide lines as to how to deal with a situation of any accidental outage or
catastrophic failure of a Streams source database. To deal with this situation if a business
decision requires a role transitions, then we need to make sure that all streams source and
destination are moved over to the DR site using the appropriate switchover and failover
procedures.

This situation needs the following action:

a) Perform failover operation on Streams source database.

b) Perform switchover operation on Streams destination database.

A13.1 Perform the following steps to recover a Streams source failure.

Stream Source failover

1 Perform a failover operation on the streams
source database.
Note: After a successful failover, the streams
source standby database transitions to the
primary and old primary becomes new standby

Follow the generic failover procedure to switch
Streams Source.

2 Open the new primary Streams source database
in restricted mode and make note of the point in
time recovery SCN.
STANDBY BECAME PRIMARY SCN: _____

Open up database in restricted mode
startup restrict;
Determine point in time recovery SCN
SELECT standby_became_primary_scn
FROM v$database;

3 On the new Streams source database, stop the
capture process if already running.

Login as streams administrator on the source
database
connect STRMADMIN/<Password>
Determine the status of capture process as follows:
SELECT capture_name,status
FROM dba_capture;
If capture process is already running then stop the
capture process as follows:

EXEC dbms_capture_adm.stop_capture
(capture_name => '<Capture Name'>);

4 Build LogMiner data dictionary for the capture
process on the new source database. This
process will output the lowest SCN value
corresponding to the data dictionary extracted to
the redo log.

set serveroutput on DECLARE
l_scn NUMBER; BEGIN
dbms_capture_adm.build(first_scn => l_scn);
dbms_output.put_line('First SCN Value = ' || l_scn);
END;

Macrotone Consulting Ltd
Streams Setup

71
Streams setup

Stream Source failover

5 At the Streams destination database, wait until all
of the transactions from the source database in
the apply process queue have been applied. The
apply processes should become idle when these
transactions have been applied.
Note: The state should be IDLE for the apply
process in both views before you continue.

Login as streams administrator on the destination
database
connect STRMADMIN/<Password>
Verify the state of the apply process and wait until it
becomes IDLE.
SELECT apply_name,
state FROM v$streams_apply_server;
SELECT apply_name,
state FROM v$streams apply reader;

6 Perform a query on the Streams destination
database to determine the highest SCN for a
transaction that was applied and note down this
value.
To obtain this value first find out the state of the
apply process. If apply process is up and running
then get this value from the
V$STREAMS_APPLY_COORDINATOR view
otherwise obtain this value from
DBA_APPLY_PROGRESS view.
HIGHEST APPLIED SCN ON DESTINATION:

If the apply process is already running, then perform
the following query:
SELECT hwm_message_number FROM
v$streams_apply_coordinator WHERE apply_name
= ' <Apply Name>';
If the apply process is disabled, then perform the
following query:
SELECT applied_message_number
FROM dba_apply_progress
WHERE apply_name = '<Apply Name>';

7 Destination is behind the Source scenario:
If the HIGHEST APPLIED SCN ON
DESTINATION noted in step 6 is less than the
STANDBY_BECAME_PRIMARY_SCN noted in
step 2 then the apply process on the streams
destination database has not applied any
transactions from the source database after
STANDBY BECAME PRIMARY SCN.

Follow the recommended steps to deal with this
situation: IF
HIGHEST APPLIED SCN ON DESTINATION <=
STANDBY_BECAME_PRIMARY_SCN Then
• Stop the capture process on the new Streams
source.
EXEC dbms_capture_adm.stop_capture
(capture_name => '<Capture Name>');
. Reset the start SCN for the capture process to the
value obtained in step-6 on the Streams source
database.

EXEC dbms_capture_adm.alter_capture
(capture_name => '<Capture Name>',
start_scn => < HIGHEST APPLIED SCN ON
DESTINATION>);__

Macrotone Consulting Ltd
Streams Setup

72
Streams setup

Stream Source failover

8 Source is behind the Destination scenario:

If the HIGHEST APPLIED SCN ON
DESTINATION obtained in step 6 is greater
than or equal to the
STANDBY BECAME PRIMARY SCN noted

in step 2 then the apply process has applied
transactions from the source database beyond
what the new source database has.

Follow the recommended steps to deal with this
situation:
IF
HIGHEST APPLIED SCN ON DESTINATION
>
STANDBY BECAME PRIMARY SCN
Then Depending on the situation consider the
following option:
• Use flash back to flash back the Streams
destination database to STANDBY BECAME
PRIMARY SCN OR • Export the objects being
streamed from the source database to the
destination.
Once the source and destinations are in sync then
re-instantiate objects being streamed on the source.9 Start the capture on the new source database as

the Streams administrator.
exec dbms_capture_adm.start_capture ('<Capture
Name'>);

10 Perform a switchover process on the Streams
destination database.

Follow the generic switchover procedure to switch
Streams destination. After a successful switchover,
the streams destination standby database transitions
to the primary role and old primary becomes new
standby database.

