Audit Package Description

Macrotone
Consulting Ltd.

Author:
Date:
Version:

Location of Document:

Auditing
Package
for
Oracle
Databases

G S Chapman
19" September 2007
1.6

Auditing_1_6



Audit Package Description

DOCUMENT HISTORY

Version Date Changed By: Remarks

1.1 11/12/03 G S Chapman Initial version.

1.2 02/02/04 G S Chapman Updated with FGA information.

1.3 12/02/04 G S Chapman Updated and general distribution.

1.4 06/04/04 G S Chapman FGA explained further and some 10g
features introduced.

1.5 01/06/04 G S Chapman Minor size changes.

1.6 19/09/07 G S Chapman Some additional information re 10G and
security.

DOCUMENT DISTRIBUTION

Copy No

Name

Role Organisation

Auditing_1_6




Audit Package Description

DOCUMENT REFERENCES

Document Name Originator Part Number Version Date
Oracle9i Security Overview Release 1 Oracle Corporation A90148-01 9.0.1
Oracle9i Application Developer's Guide - Fundamentals Oracle Corporation A96590-01 9.2
Release 2
Oracle9i Security Overview Release 2 Oracle Corporation A96582-01 9.2

Auditing_1_6




Audit Package Description

RHRRRR2O0ONOUDAWN R

N NNNNNNNNN NN NN o e
aPhwWNEFEO

W W WNHRRPRRPRERERERERRERREREREEERER B

ol S
-

W w
~ e
NN
~

3.1.2.2
3.1.2.3
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2

TABLE OF CONTENTS

INtroductioN.iiieeeeeeceeccccnssssssssssssssssnsnnnnnnnsnsssnsnsnsnnnnnnnnnnnnnnnnnnnns L

Trigger AUITING oo e e n s 2
Fine Grain AUditing ...o.ooeiie et 3
Audit Columns and Audit CoNditioNS .....iveiriiiiii i 3
(@] ul a0 ] 4= gl 1 oo [T PP RPRPPPN 3
FGA Data-Dictionary VIEWS .....uiiiiiiiiiiii st 3
RV == T o o B PP 4
The Handler ModUIE.......ouiiiiiiiiii e 5
Auditing connections through a Third party application. .........cccooiiiiiiiiiiins 5
(YN AN B T L ol 2= oo ] s £ 6
Al TYPES OF DML ettt et ettt e e e e e e s e e e e r e s e e e et e aanenaeenens 7
Comparison With Trigger APPrOach ....ciiiiiii i e e e es 7
FGA Behaviour during @ Change ........ccviiiiiieiiiii e e e e e e aas 8
All Relevant ColUMNS? .uuiuiiiiiii e 9
Capturing Bind Variables ....c.iieiiii i 10
Combining Regular and Fine-Grained AUuditing ........cccooviiiiiiiiii e e e 10
FGA and Regular Auditing: Differe@nCeS......cciiiiiiiiii i e aaeas 11
(N U [0 T 2 = 12
BT Lo =] e ol o N 12
Features and Database VErSiONS ......cciiiiiiiiiie it aaeaens 12

Installation INStructions ....ccieieeereeeeennnsssssssnssnsssssnsnnnnnnnsassnnns 13
Using the package..........ccccrvmiiimisnssss s s s s s s ssnsnnsensnns 14

(O T ol S Y= U | o I P 14
QI g [ [ XU T Tl T [ PP 14
Fine Grain Auditing of DML statements. .....cociiiiiiii i e 15
Y10 o I e I PP 15
REIMIOVE Q@ ettt ettt ettt et ettt ettt a ettt at e aaeaanes 15
[l o = PP 15
CoNtrolled SEEUPD «.viiri i e e 15
=3 oY = U o 16
ReMOVING AUAitiNG.. . i e 16
(@] gT=] oo o) H o] o = PPN 16
Viewing Audit History .........ccciiiiiiiiicsissn s s s s s s snnsnnsenes 18
Viewing the Trigger Audit HiStOry .....oooieiiiiiii e 18
Viewing the FGA Audit hiStory ....coii i e 18
Procedures and Function Calls .........ccoccvmmmnmnmssmssssssssssansanns 19
External procedures and fUNCLIONS .....oviiiii i e 19
Internal procedures and fUNCHIONS.. ..o iii i e 23

Outstanding ISSUES ...cicrvumrramrsnmssesmsnsssnssnssnsssnssanssanssnnssnnsnnsnnns 20

Auditing_1_6



Audit Package Description

TABLES
Table 1 - DBA_AUDIT_POLICIES COIUMNS .ttvutttittiittitertereereeriseranerisernsernsernsernsernnes 3
Table 2 - Important columns in the DBA_FGA_AUDIT_TRAIL VieW.....cicooviiiiiiiiiieiinenasns 4
Table 3 - Features and Database VEIrSiONS ..uiviiii i it i i i i rireeeanaees 12
Table 4 - External procedures/funClionS......ivi it i e e 22
Table 5 - Internal procedures/funCtions ... ...ociiiiiii i e e 25
Appendices

A Appendix A

A.1 Moving the AUD$ table

A.2 Moving the FGA$ table

A.3 Maintaining FGA audit records
A.4 Installation script

A.4.1 Alternative PL/SQL script

Auditing_1_6



Audit Package Description

PURPOSE OF DOCUMENT

This document provides the details of the generic Audit package developed and used for auditing
particular schema table objects within an Oracle database. It provides a description of the

methodology used and the procedures, both externally callable, but also the internal procedures
within the package.

The package is supplied in an ‘unwrapped’ format for general implementation on Oracle
databases up to and including version 10.2.

Please ensure that the version of the document matches the version of the package as installed

on the Oracle database in use. Changes can and do occur between different releases although
every effort is made to ensure backward compatibility with earlier releases.

Auditing_1_6



Audit Package Description

1 Introduction

Traditional Oracle Database auditing options allow the tracking of the actions users perform on
objects at the macro level—for example, an audit for SELECT statements on a table, enable the
tracking of who selected data from the table. However, if does not provide the knowledge of the
values selected.

With data-manipulating statements— such as INSERT, UPDATE, or DELETE—it is possible to
capture any changes by using triggers. This type of auditing will be referred to as ‘trigger
auditing’ in this document and this forms the basis of the AUDIT_PKG. It is available in every
version of Oracle the user is likely to encounter.

In Oracle 8i and above it is worth noting that it is also possible to use the Oracle LogMiner utility
to analyse the archived logs for changed records, but this is an after the fact analysis and would
require the analyst to look for specific information within the logs. This particular feature will not
be expanded upon further in this document and the interested user is referred to the relevant
Oracle supplied documentation.

Simple SELECT statements are non-data-manipulating, so they neither fire a trigger nor go into
archived logs that you can mine later, so these two techniques fall short where SELECT
statements are concerned.

Oracle9i Database introduced a new feature called fine-grained auditing (FGA), which changed
this. The feature allows the auditing of individual SELECT statements along with the exact
statements issued by users. In addition to simply tracking statements, FGA provides a way to
simulate a trigger for SELECT statements by executing a code whenever a user selects a
particular set of data.

Oracle 10g has extended the functionality of FGA to also capture INSERT, UPDATE and DELETE,
negating the need to use table triggers to capture the information. Triggers incur a PL/SQL
process call for every row processed, and create an audit record only when a DML statement
changes a relevant column.

An FGA policy, on the other hand, does not incur this cost for every row. Instead, it audits only
once for every policy. Specifically, it audits when a specified relevant column occurs in a specified
type of DML statement, either being changed by the statement or being in its selection criteria.
This combination of criteria uncovers users who hope their information gathering will be masked
because they only use the selection criteria of a DML statement. Triggers also cannot monitor the
activity of another "instead-of" trigger on the same object, while fine-grained auditing supports
tables and views.

The AUDIT_PKG described in this documentation incorporates both triggers and FGA for databases
up to version 10.2.

NOTE: This will not work on Oracle 11 without some code changes. At the current time the
specifics for Oracle 11 are not fully known. If required the changes will be made.

Auditing_1_6



Audit Package Description

1.1 Trigger Auditing

Using default auditing doesn't provide the level of detail required for insert, delete or update.
Audited information doesn't include for example the exact SQL statement or in case of
modifications, the old and new values.

In all versions of Oracle it is possible to use triggers to capture changes but in versions of Oracle
prior to 8.1 any attempt to make a change that is not committed is not registered. As of Oracle
8.1 it is possible to enhance the triggering to use autonomous transactions to simulate auditing
(also all attempts are registered). The implementation that the AUDIT_PKG, makes use of the
SYS_CONTEXT to get values from the environment (namespace) as osuser, ip_address and so on.
This means that when a front-end application makes a change provided the application context
has the details of the ‘user’ actually using the application, this will also be captured and saved in
the audit table.

Trigger auditing as established by the AUDIT_PKG will create shadow tables with the same name
as the original tables in a separate ‘audit table owner’ schema. The table structure will be similar
to the main originating table but will have twice as many fields. These fields enable a before and
after change to the table columns to be captured along with details of when, and who, made the
change. For the purposes of this document a change can be defined as a delete, insert or an
update on any of the rows within the original table.

When auditing is enabled for the first time, a shadow table is automatically created in the audit
table owner schema.

e Nulls are always permitted in the shadow table.

e All columns in the shadow table have the same data type and sizes as their counterparts in
the audited table.

e Name of the shadow table is the same name as the original table name.
e All audited columns are stored when a row is deleted.
e All audited columns are stored when data is inserted in a NULL row in the shadow table.
All Audit Trigger shadow tables contain:
e N_column_name where column_name is the name within the original source table.
e  O_column_name where column_name is the name within the original source table.
e CHANGED_BY - name of the Oracle ID that made the change
e TIMESTAMP - the date/time when the change occurred
e CHANGE_TYPE
e I-Insert
e U - Update

e D - Delete

Auditing_1_6



Audit Package Description

1.2 Fine Grain Auditing
1.2.1 Audit Columns and Audit Conditions

When establishing FGA auditing the initial set-up is to look at any SELECT statement used on the
table be audited. In real life, however, this is probably not necessary, and it may overwhelm the
audit table that stores the trail. For example a bank may need to audit when a user selects a
balance column, which contains sensitive information, but may not need to audit when a user
selects the account number for a particular customer. A column named ‘BALANCE’, whose
selection could triggers an audit, would be known as the audit column. This audit column should
be added to the FGA policy.

If audit trails are recorded each time a user selects from a table, the trails will grow in size,
causing space and administration problems, so you may want to conduct an audit only if certain
conditions are met, not every time. Using an example, perhaps the bank require an audit only if
users access the accounts of extremely wealthy account holders, for instance, only if a user selects
an account with a balance of $11,000 or more. This type of condition is known as an audit
condition and is passed as a parameter to the FGA package.

1.2.2 Optimizer Mode

FGA requires cost-based optimization (CBO) in order to work correctly. Under rule-based
optimization, audit trails are always generated whenever a user selects from a table, regardless of
whether the relevant columns are selected or not, increasing the chance of false-positive entries.
For FGA to work properly, in addition to CBO being enabled at the instance level, there should be
no RULE hint in the SQL statements and all the tables in the query must be analyzed at least with
the estimate option.

1.2.3 FGA Data-Dictionary Views

The definition of an FGA policy resides in the data-dictionary view DBA_AUDIT_POLICIES. Table 1
- DBA_AUDIT_POLICIES columns includes a brief description of some of the important columns of
this view.

Table 1 - DBA_AUDIT_POLICIES columns

OBJECT_SCHEMA | The owner of the table or view on which the FGA policy is defined

OBJECT_NAME Name of the table or view
POLICY_NAME Name of the policy-for example, ACCOUNTS_ACCESS
POLICY_TEXT The audit condition specified while adding the policy-for example, BALANCE >= 11000

POLICY_COLUMN | The audit column-for example, BALANCE

ENABLED YES if enabled; NO otherwise

PF_SCHEMA The schema that owns the policy's handler module, if one exists
PF_PACKAGE The package name of the handler module, if one exists
PF_FUNCTION The procedure name of the handler module, if one exists

The audit trails are collected in the SYS-owned table FGA_LOG$. As with any SYS-owned raw
table, some views on this table present the information in a user-friendly manner.

Auditing_1_6



Audit Package Description

DBA_FGA_AUDIT_TRAIL is a view on the table. Table 2 - Important columns in the
DBA_FGA_AUDIT_TRAIL view contains a brief description of the important columns of this view.

Table 2 - Important columns in the DBA_FGA_AUDIT_TRAIL view

The Audit Session Identifier; not the same as the Session Identifier in the V$SESSION

SESSION_ID .
view
TIMESTAMP The time stamp for when the audit record was generated
DB_USER The database user who issued the query
OS_USER The operating system user
USERHOST The host name of the machine from which the user connected
The client identifier, if set by a call to the packaged procedure
CLIENT_ID ) X e
dbms session.set identifier
EXT_NAME The name of an externally authenticated client, such as an LDAP user

OBJECT_SCHEMA | The owner of the table on which access triggered the audit
OBJECT_NAME The name of the table on which a SELECT operation triggered the audit

The name of the policy that triggered the audit (If a table has multiple policies defined on it,

POLICY_NAME each one will insert a record. In that case, this column shows which rows were inserted by
which policy.)

SCN The Oracle System Change Number at which the audit was recorded

SQL_TEXT The SQL statement issued by the user

SQL_BIND Bind variables used by the SQL statement, if any

One important column is SQL_BIND, which specifies the values of the bind variables used in a
query, knowledge that greatly enhances the tool's power.

Another important column is SCN, which records the System Change Number when a particular
query occurs. This information is useful for identifying what a user saw at a specific time, not
what the value is now, using Flashback Queries which can show the data at a specified SCN value.

1.2.4 Views and FGA

FGA can also display the information upon database views. Assume a view VW_ACCOUNTS is
defined on the ACCOUNTS table as follows:

create view vw_accounts as select * from accounts;

Now, if a user selects from the view instead of from the table:
select * from vw_accounts;

the following will be seen in the audit trail:
select object_name, sqgl_text from dba_fga_audit_trail;

OBJECT_NAME SQL_TEXT

Auditing_1_6



Audit Package Description

ACCOUNTS select * from vw_accounts

Note that the name of the base table, not the view, appears in the OBJECT_NAME column,
because the selection from the view selects from the base table. However, the SQL_TEXT column
records the actual statement the user issued, and that is exactly what is required.

If there is a need to audit queries only on views, not on tables, it is possible to set the policy up on
a view itself. This is done by passing the name of the view instead of that of the table to the
parameter object_name in the packaged procedure dbms_fga.add_policy. The OBJECT_NAME
column in DBA_FGA_AUDIT_TRAIL will then display the name of the view, and there will be no
additional record for a table access.

It is also possible (optional) to define a handler_module defining additional actions; the audit
function can potentially capture all user environment and application context values. Therefore,
policy administration should be executable by privileged users only.

Note: This handler_module feature is not currently implemented in the AUDIT_PKG.

1.2.5 The Handler Module

The power of FGA doesn't just record events in audit trails; FGA can also optionally execute
procedures. A procedure could perform an action such as sending an e-mail alert to an auditor
when a user selects a certain row from a table, or it could write to a different audit trail. This
stored code segment, which could be a stand-alone procedure or a procedure within a package, is
known as the handler module for a policy. It does not have to be in the same schema as the base
table itself; in fact, for security reasons, you may want to deliberately place it in a separate
schema. Because the procedure executes whenever a SELECT occurs, much like a trigger firing
on a DML statement, you can also think of it as a SELECT statement trigger. The following
parameters specify a handler module is specified for the policy:

ehandler_schema The schema that owns the data procedure
ehandler_module The procedure name

The handler module can also take a package name instead of a procedure name. In that
situation, the parameter handler_module is specified in package.procedure format.

This particular feature has not been implemented in the AUDIT_PKG code since there has been no
specific request. This may be changed in the future should need arise.

1.2.6 Auditing connections through a Third party application.

This scenario is one that is increasing familiar with the growth of three tier applications with the
user making a database connection through the application itself. The following extract is taken
from Oracle documentation and explains the concept of the application context.

For such applications in which a single user (for example, One Big Application User) connects to
the database on behalf of all users, per-user fine-grained access control is still possible. An
application developer can create a context attribute to represent the application user (for example,
realuser). While all database sessions (and thus all audit records) are initiated as One Big
Application User, each session can nonetheless have attributes that vary, depending on who the
real user is. This model works best for applications with a limited number of users where there is
no requirement for session reuse. Of course, each session, from the database standpoint, is
created as the same database user, so that the ability to use roles, database auditing, and others
is greatly diminished for reasons previously enumerated.

Auditing_1_6



Audit Package Description

Web-based applications typically have hundreds if not thousands of users, and the web is
stateless. There may be a persistent connection to the database (to support data retrieval for a
number of user requests), but these connections are not specific to each web-based user. Web-
based applications typically set up and reuse connections instead of having different sessions for
each user, to provide scalability. For example, web user Janet and John connect to a middle tier
application, which establishes a session in the database used by the application on behalf of both
users. Typically, neither Janet nor John are known to the database. The application is responsible
for switching the username on the connection, so that, at any given time, it's either Janet or John
using the session.

Oracle9i Virtual Private Database (VPD) capabilities facilitate connection pooling by allowing
multiple connections to access one or more global application contexts, instead of setting up an
application context for each distinct user session.

Applications use a CLIENT_IDENTIFIER (which could be an individual application username, or a
group) to reference the global application context. Global application contexts provide additional
flexibility for web-based applications to use Virtual Private Database, as well as enhanced
performance through reuse of common application contexts among multiple sessions instead of
setting up per-session application contexts. The CLIENT_IDENTIFIER is also viewable in the user
session and accessible in the USERENV naming context. The use of a CLIENT_IDENTIFIER thus
functions as an application user proxy, since the CLIENT_IDENTIFIER can be used to capture the
'application username.’ The ability to pass a CLIENT_IDENTIFIER to the database for use with
global application context is supported in OCI, thick JDBC, and thin JDBC. For OCI-based
connections, a change in CLIENT_IDENTIFIER is automatically piggybacked on the next OCI call,
for additional performance benefits.

Application user proxy authentication can be used with global application context for additional
flexibility and high performance in building applications. For example, suppose a web-based
application that provides information to business partners has three types of users: gold partner,
silver partner, and bronze partner, representing different levels of information available. Instead of
each user having his own session, with individual application contexts set up, the application could
set up global application contexts for gold partner, silver partner, or bronze partner and use the
client identifier to point the session at the correct context, in order to retrieve the appropriate type
of data. The application need only initialise the three global contexts once, and use the client
identifier to access the correct application context to limit data access. This provides performance
improvements through session reuse, and through accessing global application contexts set up
once, instead of having to initialise application contexts for each session individually.

1.2.7 FGA Audit Records

Fine-grained audit trails record the actual statement the user entered along with the values of bind
variables, if any. A typical statement that could be captured in the trail might be:

select balance from accounts
where acct_no = 10034;

If this transaction occurred at 10:00AM and it is 11:00AM, the account balance may have been
updated. If the auditor (or the DBA) decides to see exactly what the user really saw at that time,
the present value of the column may not reveal accurate information. In industrial espionage
cases, or to establish a motive or pattern, the exact data the user viewed is necessary. Even
though FGA does not capture the exact data at that point, it is possible to see another piece of
information captured in the trail.

Auditing_1_6



Audit Package Description

Earlier the structure of the view DBA_FGA_AUDIT_TRAIL was shown, which records several key
pieces of information related to the session and the user. The relevant column here is the SCN,
which records the System Change Number at the time the trail was generated. Using flashback
query, it is possible to reconstruct the data at that point in time. Assuming the SCN value was
123456 on the audit trails, issuing the following query:

select balance from accounts as of SCN 123456
where acct_no = 10034;

The clause as of SCN 123456 will return the balance from the table at that point in time, not now,
precisely what is required.

Because flashback is limited to the undo retention period, transactions that occurred beyond that
period will be lost. However, auditors may be looking for a trail that begins after the event
occurred, so it might be prudent to perform a periodic audit collection, using flashback only to
capture important columns.

1.2.8 All Types of DML

In Oracle Database 10g, FGA has been enhanced to audit all types of DML statements, not just
SELECT. Under Oracle 9i Database, FGA policies could only audit SELECT statements. In Oracle
Database 10g, however, this has been extended to include INSERT, UPDATE, and DELETE as well.
This is achieved by specifying a parameter:

statement_types => 'INSERT, UPDATE, DELETE, SELECT'

This parameter will enable auditing on all the included statement types. One option might be to
consider creating separate policies for each statement type, which would allow the ability to enable
or disable policies at will—specifically, to control the generation of audit trails to manage the space
occupied by them. By default, the statement_type parameter audits only SELECT statements.

Note: The AUDIT_PKG specifically includes checks for database version and will reject and use of
Oracle 10g FGA features upon an Oracle 9i database.

1.2.9 Comparison with Trigger Approach

Prior to Oracle Database 10g, DML statement auditing was done via the use of a table trigger. The
trigger captures the old and new values and populates the ‘AUDIT’ table. As implemented in the
AUDIT_PKG this has been made an autonomous transaction. The biggest problem is that the
trigger is fired for each row, not once per statement. For instance, a statement such as the
following:

update accounts set balance = 1200 where balance >= 3000;

fires for all 10,000 records, inserting 10,000 rows into the audit table. This can seriously
undermine the performance of the update statement and may even cause it to fail due to space
problems in the audit table. Using a statement trigger doesn't help either, because it can't capture
any new or old values of individual records. In contrast, in the FGA approach, only one record is
created and the insert executes only once per statement, not once per row—affecting performance
negligibly, if at all.

In FGA, it is possible to specify the relevant columns to limit generation of audit trails only when
those columns are accessed. In triggers the functionality exists through the use of the WHERE of
the trigger definition. However, therein lies a very important difference — in triggers the columns
are checked only when they are changed, not merely accessed. In FGA, the auditing kicks in

Auditing_1_6



Audit Package Description

whenever the columns are accessed, whether they're changed or not. This characteristic makes
FGA more versatile than triggers.

Another advantage is the applicability of the FGA facility. Sometimes, the INSTEAD OF triggers
defined on a view update it on the base table; another INSTEAD OF trigger can't capture the
changes made by the other trigger and hence they cannot be recorded. FGA, however, is
established on views or tables and captures the changes regardless of where they come from —
user statements or triggers.

1.2.10 FGA Behaviour during a Change

Data changes all the time, so it could potentially become applicable in the audit condition when it
wasn't so earlier (or vice versa). This issue gives rise to some interesting questions about FGA
behaviour in different scenarios. Using an example banking type scenario, where the FGA policy
has been defined on UPDATE with the condition is BALANCE >= 3000 and audit column is
BALANCE.

Scenario 1

Before: BALANCE = 1000
User issues:
update accounts set balance = 1200 where ACCOUNT_NO = ....

The old and new balances are less than 3,000, and the audit condition is not satisfied; hence this
statement will not be audited.

Scenario 2

Before: BALANCE = 1000
User issues:
update accounts set balance = 3200 where ACCOUNT_NO = ....

The new balance is more than 3,000, and the audit condition is satisfied; hence this statement will
be audited.

Scenario 3

Before: BALANCE = 3200
User issues:
update accounts set balance = 1200 where ACCOUNT_NO =# ...

The new balance is less than 3,000 but the old balance was more. Hence the audit condition is
satisfied and this statement will be audited.

Scenario 4

User inserts a row with BALANCE < 3000.
insert into accounts values (9999,1200,'X");

Because the balance 1,200 does not satisfy the audit condition, the statement is not audited. If
the value of the balance column were greater than or equal to 3,000, it would have been audited.

Auditing_1_6



Audit Package Description

Scenario 5

User inserts a row with null value in balance.
insert into accounts (account_no, status) values (9997, 'X');

Because the balance is null, and the column does not have any default value, the audit condition is
not satisfied (the comparison NULL >= 3000 results in FALSE) and the statement is not audited.
Important note: Should the column have had a default value of more than 3,000, the statement
still would not have been audited, even though the balance column value of the inserted row is
greater than 3,000.

1.2.11 All Relevant Columns?

Consider a policy defined on the table ACCOUNTS as follows.
dbms_fga.add_policy (
object_schema => 'FRED
object_name => 'ACCOUNTS',
policy_name =>'ACCOUNTS_SEL',
audit_column => 'ACCOUNT_NO, BALANCE',
audit_condition => 'BALANCE >= 3000,
statement_types => 'SELECT'
)i

The policy is defined on the columns ACCOUNT_NO and BALANCE. Assuming the balance for
account 9995 is 3.200, if the following statement is issued:

select balance from accounts where account_no = 9995;

the statement will be audited, since the balance column is chosen and the balance is 3,200,
greater than 3,000, satisfying the audit condition. The statement will trigger an audit regardless
of which of the three columns are selected.

In some cases the combination of columns may be of importance, but not a specific column. For
instance, if a user wants to find out the total balance in the bank, she issues:

select sum(balance) from accounts;

This query is fairly innocent; it does not specifically identify an account holder and the account
balance. Security policy might not require this query to be audited, however, the query

select balance from accounts where account_no = 9995

must be audited, as it specifically identifies an account. By default all statements, regardless of
the combination of columns used, are audited. This will create a large number of unneeded audit
trail entries and perhaps some space constraint problems. To limit them, you can specify auditing
to kick in only when the desirable combinations of columns are used in the query. While defining
the policy, there is a parameter:

audit_column_opts => DBMS_FGA.ALL_COLUMNS

This parameter will make the policy create audit trail entries only when both the columns
ACCOUNT_NO and BALANCE are accessed in the query. For instance, the following query will
produce an audit trail entry.

Auditing_1_6



Audit Package Description

select account_no, balance from accounts;
But, this one will not.
select account_no from accounts;

Use of this parameter will limit the amount of auditing to a more manageable size. If the default
behaviour—that is, auditing when any of the columns are selected—is desired, then it is possible to
use the different value for the same parameter.

audit_column_opts => DBMS_FGA.ANY_COLUMNS
1.2.12 Capturing Bind Variables

With Oracle Database 10g, additional pertinent information can be written to the regular audit
trails such as the values of the bind variables used in the query. Using the initialization parameter
performs this

audit_trail = DB_EXTENDED

In FGA audit trails, it may or may not make sense to have the values of the bind variable. To stop
recording the values, there is another parameter in the add_policy() procedure as follows.

audit_trail => DB
By default, the bind variables are captured and the value of this parameter is DB_EXTENDED.
1.2.13 Combining Regular and Fine-Grained Auditing

In Oracle Database 10g, regular auditing has also been improved. Implemented by the AUDIT
command, regular auditing can now capture a lot of other useful information, such as:

e Extended, granular timestamp
e  Operating system process ID

e Transaction identifier (when the audit trail is generated by a data modifying transaction, such
as via an update, the transaction id is recorded here, which can be joined later with the view
DBA_TRANSACTION_QUERY to identify the exact statement, its undo SQL, the row id, and
much more)

e SQL Statement Text
e Values of bind variables
e SCN at the time of change.

In terms of content and capability, the regular auditing resembles the fine-grained version. As a
DBA, however, there is interest in knowing all audit entries, not just one. A new view,
DBA_COMMON_AUDIT_TRAIL, combines regular and FGA trails. The following query could be used
to check them both: select * from dba_common_audit_trail;

This view is a union of DBA_AUDIT_TRAIL and DBA_FGA_AUDIT_TRAIL, with relevant information
from each. From the data dictionary, the view is created as shown below.

select 'Standard Audit', SESSIONID,
PROXY SESSIONID, STATEMENTID, ENTRYID, EXTENDED TIMESTAMP, GLOBAL UID,
USERNAME, CLIENT ID, Null, OS_USERNAME, USERHOST, OS PROCESS, TERMINAL,
INSTANCE NUMBER, OWNER, OBJ NAME, Null, NEW OWNER,
NEW_ NAME, ACTION, ACTION NAME, AUDIT OPTION, TRANSACTIONID, RETURNCODE,
SCN, COMMENT TEXT, SQL BIND, SQL TEXT,
OBJ PRIVILEGE, SYS PRIVILEGE, ADMIN OPTION, GRANTEE, PRIV USED,
SES ACTIONS, LOGOFF TIME, LOGOFF LREAD, LOGOFF PREAD, LOGOFF LWRITE,
LOGOFF DLOCK, SESSION_CPU

from DBA AUDIT TRAIL

10
Auditing_1_6



Audit Package Description

UNION ALL
select 'Fine Grained Audit', SESSION_ID,
PROXY_ SESSIONID, STATEMENTID, ENTRYID, EXTENDED TIMESTAMP, GLOBAL UID,
DB_USER, CLIENT ID, EXT NAME, OS USER, USERHOST, OS_PROCESS, Null,
INSTANCE NUMBER, OBJECT SCHEMA, OBJECT NAME, POLICY NAME, Null,
Null, Null, STATEMENT TYPE, Null, TRANSACTIONID, Null,
SCN, COMMENTSTEXT, SQL BIND, SQL TEXT,
Null, Null, Null, Null, Null,
Null, Null, Null, Null, Null,
Null, Null
from DBA_FGA AUDIT TRAIL

1.2.14 FGA and Regular Auditing: Differences

There are differences between standard and fine-grained auditing in Oracle Database 10g. These
are as follows:

Standard auditing must be enabled at the database level using the parameter AUDIT_TRAIL.
This parameter is not dynamic; the database has to be restarted to make it take effect. In
contrast, FGA does not require any parameter change.

Once in place on an object, standard auditing stays there. To deactivate it, you must remove
the audit option using the NOAUDIT command. That can be inconvenient because dropping
the audit option on a table also drops metadata information. FGA, however, can be
temporarily disabled and enabled, without losing any metadata information.

FGA can handle only four types of statements: SELECT, INSERT, UPDATE, and DELETE.
Regular audit, in contrast, can handle many other statements and privileges, even session
connections and disconnections.

Standard audit creates only one record per session (by session) or one per each access to
the object (by access). This modest footprint is important for controlling space inside the
audit trail tables. FGA isn't as low-profile; it operates on a per-access basis — making the
trail bigger.

Standard auditing can be used to detect any attempts to break in, by recording the trail, and
if the attempt was unsuccessful, the error code. FGA can't.

Standard auditing can write to either database tables or an OS file. The latter is useful when
an auditor, not the DBA, has access to the trails. In Windows, the non-DB audit trails are
recorded in the Event Log and accessible differently. This option protects the integrity of the
audit trails. FGA logs, however, are written only to the database table FGA_LOGS$. Itis
possible to create user-defined audit handlers in FGA to write to OS files, but their integrity is
not assured.

Standard auditing can be set up for default objects. This facility becomes extremely useful in
cases where tables are created at runtime: The default auditing option enables auditing
without the DBA's intervention. This is not possible in FGA; one must create a policy on an
existing table, and that can happen only after the table has been created.

In FGA, auditing is much more flexible--only when certain columns are accessed, when a
certain condition is evaluated to true, and so on. That versatility comes in handy when there
is a need to control the growth of the audit trail.

SQL bind variables are captured by default in FGA. In regular auditing, the initialization
parameter audit_trail must be set to db_extended to enable that.

Privileges differ: regular auditing requires audit system or statement privilege; FGA needs
only an execute privilege on dbms_fga package.

11

Auditing_1_6



Audit Package Description

From the above comparison, it is apparent that FGA may prove useful in certain cases. With the
enhanced regular auditing features in Oracle Database 10g, some tasks previously considered
impossible such as capturing values of bind variables, become quite easy.

1.2.15 FGA Summary

FGA enables the support of privacy and accountability policies in an Oracle database. In addition
because auditing occurs inside the database, not in an application, actions are audited regardless
of the access methods employed by users (through tools such as SQL*Plus or applications),
allowing foolproof setup.

1.3 Triggers or FGA?

There are two situations where triggers may be a better choice than FGA:

e FGA inserts the audit trails using an autonomous transaction, which is committed within its
own context. If the DML statement fails or is rolled back, the inserted trail record is not
rolled back. If a user updates something but does not commit, the change is not made but
the audit trail is created anyway. This may lead to several false positive entries in the audit
trail, a potentially undesirable situation. Subsequent analysis of the table using SCN
numbers captured through flashback queries can probably reveal this problem, but the
process may be complicated. But if this risk is not acceptable, then a trigger-based approach
is preferred over FGA.

e FGA records the SQL statements issued by the user and the SCN number, but not the values
before and after the change. A separate facility must be used to extract those values using
flashback queries from the tables. Because the flashback queries depend on the information
contained in UNDO segments, which is limited, the facility may not extract the old values
from points that far into the past. A trigger-based approach captures the change at the
source; hence the recording of old and new values is guaranteed.

1.4 Features and Database versions

The package is built using dynamic SQL. This enables the same code to be compiled upon
different database versions, and in this way provide the appropriate functionality upon that
particular database. This implication is that not all of the features of the AUDIT_PKG will be
available upon every database. The table below describes the features available on the different
database versions.

Database Version Features Available
Oracle 8.1.7 and below Trigger Auditing only
Oracle 9.x (9i) Trigger Auditing and FGA for

SELECT statements only

Oracle 10.1 and 10.2 (10g) Trigger Auditing and FGA for
SELECT, INSERT, UPDATE and
DELETE operations

Table 3 - Features and Database versions

12
Auditing_1_6



Audit Package Description

2 Installation Instructions

The AUDIT_PKG the package was designed to be owned by a single individual schema. This
schema would then be used to establish the auditing requirements within the database. This
schema owner may or may not be the same ‘audit table’ schema owner. The reason for the
distinction is that the package owner will have a number of additional database privileges that it
might not be desirable to provide to the Audit table owner. An example of this is if the audit table
owner is used for generating reports, or carrying out other tasks within the database and it is
necessary to restrict what they can or cannot do.

The first step is to create a user who will ‘own’ the audit_pkg package. The script provided in
Appendix A-3 can be used. This script called ‘create_aud_pkg_owner.sql’ in the distribution will
prompt for the ‘audit_pkg owner’, a default tablespace and a suitable password for the owner. If
the supplied owner already exists within the database, the user will be dropped and re-created.
All the required database privileges are provided to the user, enabling the user to perform all the
required actions when the procedures are run.

Once installed and compiled cleanly the package is available to use by any user given execute
privilege on the package and with the appropriate database privileges.

13
Auditing_1_6



Audit Package Description

3 Using the package

There are a number of ways in which the package can be used. Some of these will be outlined
below.

3.1 Quick Setup
3.1.1 Trigger Auditing

The package is initially called using the ‘setup_audit’ procedure, providing the current name of the
database schema that is to be audited and the name of a schema to hold the triggering audit
tables.

exec audit_pkg.setup_audit(*Schema Owner’,’Audit Schema Owner’);
Where ‘schema owner’ is the owner of the tables to be audited.
‘audit schema owner’ is the owner who is to own the audit tables.

The following steps will be performed by the above procedure to generate the required
procedures, triggers and privileges to enable the auditing to work. These steps are procedurised
and are done automatically.

1. The audit table owner if they exist in the database will be dropped.

2. The specified Audit table owner will be created in the database. This is the second
parameter supplied to the setup_audit procedure. The first parameter is the owner of the
tables to be audited. The audit table owner cannot be the same as the original table
owner. This restriction may be lifted in later versions.

3. The Audit table owner is given the connect role, and ‘create table’, and create procedure
privilege.
4. The originating table owner is given the ‘create trigger’ privilege.

5. An internal procedure is then run to provide the ‘audit table owner’ with select privileges
on the ‘originating tables’.

6. The audit tables will then be created from the ‘originating tables’.

7. The originating table owner is then provided with ‘select and insert privileges’ on the
generated audit tables.

8. The next step is to generate the originating table triggers. These triggers will populate the
audit tables when the table entries are inserted, updated or deleted.

9. The last step is to test that insert, deletes and updates on the main tables generate entries
in the relevant audit tables.

Once the triggering is set up, the user can decide to update or change the triggers to restrict what
columns to audit using the package generated triggers as a starting point.

The triggers generated will be suitable for capturing changes on every single column within the
original table. It will be necessary to refine the trigger if this generates too much information. For
example it may be sufficient to only capture changes on certain columns of the originating table.
In these situations the trigger can be used as a model for making the required changes.

Note that LOB column changes will not be captured. The reason for this is that a change to a LOB
does not in itself cause a table change and hence the trigger will not be fired and changes
captured. In these situations it is necessary for the application to capture the before and after

14
Auditing_1_6



Audit Package Description

LOB data in the audit table. The audit table itself will contain the columns ready to accept the LOB
data.

3.1.2 Fine Grain Auditing of DML statements.

The Fine grain auditing is included as part of the AUDIT_PKG and has specific procedures available
to enable it. FGA works by establishing a policy on the desired table. There is a broad setup_fga
routine which will establish a FGA policy for every table in a schema using a default condition such
that every column and hence every SELECT statement is audited. Similarly there are routines to
remove FGA from all the tables in a schema. These routines are used to quickly set up the FGA
auditing and over time the conditions and auditing criteria can be refined prior to the application
being officially released.

Heavily used tables will generate a lot of entries in the FGA audit table and hence it is a common
requirement to change the FGA condition and the columns to which it applies. Procedures within
the package enable these to be assembled with a internal table and all applied at once or for
changes to be made one at a time.

With Oracle 10g databases the Fine Grain Auditing allows for auditing of INSERT, UPDATE and
DELETE statements. With Oracle 9i this is restricted to SELECT statements.

The three main FGA procedures are as follows:

3.1.2.1 Setup_fga

This is the procedure that sets up the Fine Grain Accounting on the tables of the entered user.
The schema owner to be audited is the only mandatory parameter to the ‘setup_fga’ routine and it
will establish database policies on all of the schema tables using the default condition ‘1=1" which
is that all columns are audited. Policies may be modified or refined later when more experience in
the auditing requirements are known.
To use it make a call to the procedure as follows:

SQL> exec audit_pkg.setup_fga('Schema Owner’,'Test Only flag”);

The test only flag accepts one value, either “‘TRUE’ or ‘FALSE’. Setting it to false will tell the user
what it will do but not actually perform the action.

3.1.2.2 Remove_fga
This is similar to the setup described above. To use it make a call to the procedure as follows:
SQL> exec audit_pkg.remove_fga(*Schema Owner’,'Test Flag’);

The parameters are as described for the setup procedure.

3.1.2.3 List_fga

This procedure lists all the existing Fine Grain tables being audited to the screen. It requires no
parameters and is invoked as follows:

SQL> exec audit_pkg.list_fga;
3.2 Controlled setup

If the user knows the requirements for auditing then the auditing can be added on a table-by-table
basis. This provides a much finer establishment of auditing criteria. In this scenario the first
stage would be to create the audit table owner using the ‘create_audit_owner’ procedure. The
default password will be the name of the audit schema. Remember to change the default user
password using the ‘alter_user_password’ routine before final implementation. Then there is the

15
Auditing_1_6



Audit Package Description

add_auditing_to_table procedure to add trigger auditing to a specified table, and the
‘add_fga_on_table’ procedure to add FGA. These routines individually perform all the grants
required when the audit table is generated and the appropriate grants given. The advantage is
that these routines provide finer control especially as the FGA routine allows any particular
auditing condition to be specified.

An update FGA routine ‘update_fga_condition’ allows refinement of the auditing condition at any
time. In this release this effectively removes any existing FGA policy and creates a new policy.

Similar routines exist to remove trigger auditing ‘remove_auditing_from_table’ or FGA
‘remove_fga_from_table’ from individual tables.

3.3 List Setup.

Similar to the controlled setup described above but it allows the user to build up an internal list
within the package and then to run the whole setup from a single command. The initial stage is to
ensure that the audit schema owner is created in the database (see above). The procedure
‘add_table_to_list” will add triggering auditing or fga auditing criteria to the internal list. Routine
‘remove_table_from_list” will similarly remove the specified auditing criteria from the internal list.
Routine ‘display_list_to_process’ along with secondary routines ‘display_trig_list_to_process’ and
‘display_fga_list_to_process’ enable the user to see the contents of the internal list to allow further
changes before executing the list with the ‘process_list’ procedure.

3.4 Removing Auditing

Procedure ‘remove_fga’ will remove all the FGA policies within the database for the specified
schema. The procedure ‘remove_fga_from_table’ would be used to remove a specific policy.
Procedure ‘drop_audit_user’ will perform a similar action for trigger auditing by removing any table
triggers updating the audit table. The procedure will then finally remove the audit tables and the
audit table owner from the database.

3.5 Other options

There are three routines that were used in development of the audit_pkg, which can be used to
display additional user information when the package is used. These are the ‘set_dbg’ and
‘set_nodbg’ routines, which turn on output information or off depending on which routine is called.

Some of the procedures will accept an option parameter ‘p_list_only” which can be used to show
the actions that would be performed were the routine to be called without the parameter set, but
will not perform the actions. This is a Boolean variable and would be either TRUE or FALSE.

There is also a small routine to trip the FGA logs. By Oracle design the use of FGA in Oracle is
such that if two separate audit policies exist on two individual tables, and a select statement is
issued referring to the two tables, then the FGA log will contain two entries. One entry for each
policy is generated. This may generate a lot of apparently duplicate table entries in the audit log.
It is possible to search through the audit log and remove any of these ‘duplicate’ entries, based
upon the table entries other than the policy name and the object (table) name. Whether this is
suitable in the users specific implementation is left to the user to decide.

16
Auditing_1_6



Audit Package Description

Notes

Input of user names is case insensitive. It will convert them to upper case in the
procedure itself.

FGA table will get very big. It should be moved to a separate tablespace. See Appendix
A.3 on the method used to perform this. Note that with Oracle 10g the default tablespace
for this table is SYSAUX, where as with Oracle 9i it is within the SYSTEM tablespace.

The default setting for the FGA on the tables is set to audit every column in the table. This
will generate copious amounts of output. The FGA condition can be changed on individual
tables by using the update_fga_condition procedure.

If the package owner, who runs the set up is the same as the owner of the Audit tables,
there is a specific check in the package such that privileges are not reassigned.

The user name in the FGA Audit tables will be the value established by the application if it
is using the sys_context settings. If this value is not set by the application then the
application owner will be the logged as the user name.

There is still a need to control the FGA audit tables on a periodic basis to keep the table
size within a reasonable range.

There is still a small issue with duplicate FGA audit entries if two (or more) tables, which
are being audited, are contained within the same select statement. This means that some
disk space is being used that shouldn’t be. A small procedure to periodically remove the
duplicates has been written but whether this is desirable is a decision for the user.

FGA policy names are generated from the first 30 characters of the table name appended
with *_P’. Trigger names are the first 30 characters of the table name appended with *_T".

17

Auditing_1_6



Audit Package Description

4 Viewing Audit History
4.1 Viewing the Trigger Audit History

Each individual table has its own audit trail table so a select statement such as the following would
be applicable:
select O_APPEALTYPEID, N_APPEALTYPEID ,
O_ACTIONINSTANCEID, N_ACTIONINSTANCEID,
O_USERLOGINNAME , N_USERLOGINNAME,
CHANGED_BY,
CHANGE_TYPE,
To_char(TIMESTAMP,'YYMMDDHH24MI")
from AUDITOR.APPEAL
where rownum < 11;

The above statement will display the first 10 rows from the APPEAL audit table owned by the
schema ‘AUDITOR’, with the old and new values for the fields APPEALTYPEID, ACTIONINSTANCEID
and USERLOGINNAME, along with details of when they were changed and by whom, and whether
the change was an insert 'I’, delete ‘D’ or update ‘U’.

The select statement would be modified as appropriate to specify which columns were to be
displayed and the appropriate name of the audit table owner and table name.

4.2 Viewing the FGA Audit history

The following is a simple query to view the results of the FGA audit trail.

SELECT to_char(timestamp, 'YYMMDDHH24MI'")
AS timestamp, db_user, policy_name, sql_bind, sql_text
FROM dba_fga_audit_trail;

Result:

TIMESTAMP DB_USER POLICY_NAME SQL_BIND SQL_TEXT

0201301822 MILLER AUDIT_EMP_SALARY SELECT sal
FROM scott.emp

0201311143 SCOTT AUDIT_EMP_SALARY SELECT ename

FROM dept pd, emp pe
WHERE pd.deptno=pe.deptno
AND pd.deptno=10

AND sal>1000

18
Auditing_1_6



Audit Package Description

5 Procedures and Function Calls

This section describes the calling parameters for every procedure and function used within the
package. The external procedures are the ones that will be used in most usual day to day
activities. The internal procedures are provided for completeness but are not callable except from

within the package itself.

5.1 External procedures and functions
Procedure Name Parameters Param Default Description
Type value

Debugging procedures

PROCEDURE set_dbg;

NONE

N/A

Used to allow the generation of
informational messages intended to
assist debugging during

development.

PROCEDURE set_nodbg;

NONE

N/A

As above but turns of the message

generation.

FUNCTION debugging

NONE

N/A

RETURN BOOLEAN

Generally only of use internally,
determines the state of the internal

debug flag.

Trigger Audited Table Procedures

PROCEDURE

create_audit_table

p_table_name

IN VARCHAR2

p_table_owner

IN VARCHAR2

Generic routine that will create an
audit table based on the supplied
table. The format of the table

created is described elsewhere in

p_list_only IN BOOLEAN FALSE the document.
p_audit_owner IN VARCHAR?2 NULL
PROCEDURE p_table_name IN VARCHAR2 - Generic routine to create an audit
create_audit_trigger trigger based on the criteria used for
p_table_owner IN VARCHAR2 | - the audit table created in the
‘create_audit_table’ procedure. This
p_list_only IN BOOLEAN FALSE

p_audit_owner

IN VARCHAR2

trigger may be used as a model if
additional checks or code is

required.

PROCEDURE

set_audit_table_owner

p_audit_owner

IN VARCHAR2

Establishes the default audit table
owner, which saves providing the
details multiple times if a number of

routines are called from a script.

PROCEDURE setup_audit

p_table_owner_in

IN VARCHAR2

Routine to set up trigger auditing

Auditing_1_6

19




Audit Package Description

Procedure Name Parameters Param Default Description
Type value
b_audit_owner_in IN VARCHAR2 ) upon ALL of the tables within a
specified schema, under the
specified ‘audit table schema.
PROCEDURE p_audit_owner IN VARCHAR2 Creates the specified audit table
create_audit_owner owner with all appropriate grants
p_def_tspace IN VARCHAR2 USERS etc.
p_temp_tspace IN VARCHAR2 TEMP
PROCEDURE p_user IN VARCHAR2 Changes the specified users
alter_user_password database password.
p_password IN VARCHAR2
PROCEDURE p_audit_owner IN VARCHAR2 - Drops the specified audit table
drop_audit_owner owner. Also removes any triggers
referencing the audit table owners
tables.
Fine Grain Auditing Procedures
PROCEDURE setup_fga p_table_owner_in IN VARCHAR2 - Establishes FGA on all the tables
within the specified schema using a
p_list_only_in IN BOOLEAN FALSE default ‘SELECT’ condition, which is
upon all of the table columns being
audited. The listing only action will
inform the user of the tables so
affected.
PROCEDURE remove_fga p_table_owner_in IN VARCHAR?2 - Removes FGA from all the tables
within the specified schema. The
p_list_only_in IN BOOLEAN FALSE listing only action will inform the
user of the tables so affected. Note
this will remove ALL FGA policies for
the specified schema.
PROCEDURE list_fga; NONE N/A - Lists to the screen the tables upon
which FGA is active.
List processing options
PROCEDURE table_owner IN VARCHAR2 - The default audit_table_owner
add_table_to_list (v_audit_owner) is obtained from
table_name IN VARCHAR2 | - the value contained within the
package or from the owner
audit_type IN VARCHARZ | 'FGA’ previously specified in the call to
procedure ‘set_audit_owner’
audit_table_owner IN VARCHAR2 v_audit_own previously described above.
er

Auditing_1_6

20




Audit Package Description

Procedure Name

Parameters

Param

Type value

Default

Description

fga_condition

IN VARCHAR2 NULL

action_type

IN VARCHAR2 'ADD'

policy_name

IN VARCHAR2 NULL

column_names

IN VARCHAR2 NULL

statement_types

IN VARCHAR2 NULL

PROCEDURE

display_list_to_process

audit_type

IN VARCHAR2 'ANY’

Lists all the contents of the tables
held within the current list prior to
the actions on the list items being
performed. Used to check that
items are correct within a SQL

session before proceeding.

PROCEDURE

display_fga_list_to_process

audit_type

IN VARCHAR2 'FGA'

As with the ‘list_aud_tables’
procedure described above but only

lists FGA tables.

PROCEDURE

remove_table_from_list

table_owner

IN VARCHAR2 -

table_name

IN VARCHAR2 -

audit_type

IN VARCHAR2 NULL

policy_name

IN VARCHAR2 NULL

Removes the indicated table
auditing option from the internal list

prior to processing.

If policy name is specified it
overrides the audit type
specification. If neither are specified
all audit types are removed on the

specified table.

PROCEDURE audit_type IN VARCHAR2 'TRIG' As with the ‘list_aud_tables’

display_trig_list_to_process procedure described above but only
lists Trigger audited tables.

PROCEDURE audit_type IN VARCHAR2 'ANY' Removes all tables of the specified

clear_tables_from_list type from the internal lists prior to
processing.

PROCEDURE process_list NONE N/A - Processes all the entries in the build
up internal table. Internal table is
cleared after this procedure has
been called.

Individual table changing procedures
PROCEDURE table_name IN VARCHAR2 Adds trigger auditing to specified

add_auditing_to_table

table_owner

IN VARCHAR2

table, including all grants etc.

Auditing_1_6

21




Audit Package Description

Procedure Name Parameters Param Default Description
Type value
audit_table_owner IN VARCHAR2
PROCEDURE table_name IN VARCHAR2 Adds an FGA policy with the
add_fga_on_table specified condition to the system. If
table_owner IN VARCHAR2 the policy name is specified it will be
used in preference to the internally
fga_condition IN VARCHAR2 generated policy name. If
statement_types is not specified the
column_names IN VARCHARZ | NULL default of *SELECT’ will be used.
IN VARCHAR2
policy_name NULL
IN VARCHAR2
statement_types NULL
PROCEDURE table_name IN VARCHAR2 Removes trigger auditing from
remove_auditing_from_table specified table. Removes trigger and
table_owner IN VARCHAR2 audit table.
audit_table_owner IN VARCHAR2
audit_table_name IN VARCHAR?2 NULL
PROCEDURE table_owner IN VARCHAR2 Removes the FGA policy from the
remove_fga_from_table specified table. If policy_name is
table_name IN VARCHAR2 NULL (or not specified) the internal
‘SELECT’ policy will be removed. If
policy_name IN VARCHAR2 NULL policy_name is the name of a
specific policy it will be removed. If
policy name is ALL then all policies
on the specified table will be
removed.
PROCEDURE table_owner IN VARCHAR2 Updates (changes) the FGA
update_fga_condition condition on the specified table.
table_name IN VARCHAR2
fga_condition IN VARCHAR2
column_names IN VARCHAR2 NULL
policy_name IN VARCHAR2 NULL

PROCEDURE trim_fga_log NONE

N/A

Intended to enable trimming of the
audit trail logs to remove duplicate
entries caused when the same select
statement on two or more tables is

caught by two or more policies.

Table 4 - External procedures/functions

Auditing_1_6

22




Audit Package Description

5.2 Internal procedures and functions

The following table describes the internal procedures and functions available within the package.
Internal procedures and functions are not available for external usage unless specifically exposed.
Some of these procedures may be usable in future developments or for other packages and are

therefore described below for completeness.

If interested in using any of these procedures and or functions please contact the author, or
alternatively if you feel confident about exposing those procedures yourself feel free to alter the
code at your own risk. No responsibility is taken for any changes made, or the consequences of

those changes.

Procedure Name Parameters Parameter Type | Default Description
value
PROCEDURE pl p_str IN VARCHAR2
p_len IN INTEGER 80
FUNCTION db_09i None N/A RETURN BOOLEAN.
TRUE if Database
version is 9i, otherwise
FALSE
FUNCTION db_10g None N/A RETURN BOOLEAN.
TRUE if Database
version is 10g,
otherwise FALSE
PROCEDURE copy_blob p_src_table IN VARCHAR?2
p_src_col IN VARCHAR2
p_dest_table IN VARCHAR?2
p_dest_col IN VARCHAR2
p_src_off IN NUMBER 1
p_dest_off IN NUMBER 1

PROCEDURE issue_grant

p_table_owner

IN VARCHAR2

p_table_name

IN VARCHAR2

p_grantee

IN VARCHAR2

p_grants

IN VARCHAR2

PROCEDURE

p_table_name

IN VARCHAR2

Auditing_1_6

23




Audit Package Description

Procedure Name Parameters Parameter Type | Default Description
value
remove_audit_trigger
p_table_owner IN VARCHAR2
PROCEDURE p_table_name IN VARCHAR?2
remove_audit_table
p_table_owner IN VARCHAR2
PROCEDURE p_table_name IN VARCHAR?2 Overloaded version of
create_fga_policy routine with ability to
p_table_owner IN VARCHAR2 specify an audit
column.
p_column IN VARCHAR2 NULL
In Oracle 9i only single
p_condition IN VARCHAR2 NULL column variable is
acceptable. In 10g
p_policy_name IN VARCHAR2 NULL multiple columns can
be specified.
p_statement_types IN VARCHAR2 NULL
If no columns are
specified all columns
p_list_only IN BOOLEAN FALSE
are assumed.
PROCEDURE p_table_name IN VARCHAR?2
remove_fga_policy
p_table_owner IN VARCHAR2
p_policy_name IN VARCHAR2 NULL
p_list_only IN BOOLEAN FALSE
PROCEDURE p_table_owner IN VARCHAR2
generate_all_audit_tables
PROCEDURE p_table_owner IN VARCHAR2
generate_all_audit_triggers
p_audit_owner IN VARCHAR?2
PROCEDURE p_owner IN VARCHAR?2
remove_all_audit_triggers
PROCEDURE p_table_owner IN VARCHAR2 Generate fga policies
generate_all_fga_policies on all tables for the
p_list_only IN BOOLEAN FALSE specified schema using
default condition.
PROCEDURE p_table_owner IN VARCHAR2 Removes all fga
remove_all_fga_policies policies on all tables in
p_list_only IN BOOLEAN FALSE

specified schema.

PROCEDURE

p_table_owner

IN VARCHAR2

Generates all tables

Auditing_1_6

24




Audit Package Description

Procedure Name Parameters Parameter Type | Default Description
value
generate_all_table_grants grants on the tables in
p_grantee IN VARCHAR2
the specified schema.
p_grants IN VARCHAR2

Table 5 - Internal procedures/functions

Auditing_1_6

25




Audit Package Description

Outstanding Issues

Audit table owner cannot be the same as the table owner.
Audit table names are the same as the main table name.

LOB triggering cannot be implemented in the package but code to allow the LOB's to be
placed in the audit tables is within the package. This code need further testing before
production use.

The code for handling LOB columns within the trigger generation needs a review before
being generally available for production usage. In the mean time the user is advised to
check carefully the triggers generated for tables containing LOB columns and modify if
required. Warning messages are generated and will be displayed on the screen provided
that dbms_output is enabled within the session.

No support for FGA handling procedures are currently allowed for.

Tables containing LONG variables can not be used with the trigger auditing. The reason
for this is that an Oracle table can only contain one long variable. The audit trigger would
try to create two columns, both of type long. Since the use of LONG variables is
deprecated, it is not considered appropriate to develop a solution to this problem. Note
that the Oracle generated ‘PLAN_TABLE' contains a LONG variable.

The internal string buffer used to hold the code that is then executed is of a finite size.
(8192 characters on version 1.4 and below, 16000 characters on 1.5 and above). The
consequence of this is that very large tables may cause the internal string buffers to be
exceeded.

Oracle 11 is not yet supported.

26

Auditing_1_6



Audit Package Description

A. Appendix
A.1 Moving the AUD$ table

You should be aware that moving AUD$ out of SYSTEM tablespace is *not* a supported procedure.
Oracle does not support changing ownership of AUD$, or any triggers on it.

Oracle stores audit trail records in the SYS.AUD$ base data dictionary table. The problem is that
this table grows inside the SYSTEM tablespace and must have records deleted from it or be
truncated, otherwise it will take up all the room in the SYSTEM tablespace. This deleting and
truncating of the SYS.AUD$ table can cause fragmentation of the SYSTEM tablespace.

The following script allows a DBA to move SYS.AUD$ out of the SYSTEM tablespace. By moving it
out of SYSTEM tablespace, the table's size can be controlled without filling or fragmenting the
SYSTEM tablespace.

create tablespace "AUDIT"
datafile 'S$HOME/data/audOl.dbf' size 500k
default storage (initial 100k next 100k pctincrease 0)

/
create table audx tablespace "AUDIT"
storage (initial 50k next 50k pctincrease 0)
as select * from aud$ where 1 = 2

/

rename AUDS to AUDSS

/

rename audx to aud$

/

create index 1 aud2

on aud$ (sessionid, sesS$tid)
tablespace "AUDIT" storage(initial 50k next 50k pctincrease 0)

/

Change the script to have the correct values for the new ‘aud$’ tablespace data file, and if desired
different storage parameters.

A.2 Moving the FGAS$ table

Note this is not an Oracle supported process. You use it at your own risk.

Prior to Oracle 10g being released the Fine Grain tables were located within the SYSTEM
tablespace along with the standard AUDIT tables. With Oracle 10g a new tablespace called
SYSAUX is defined as the default location for these tables. Part of the 10g changes were that
instructions are provided for moving some of these tables out of the SYSAUX tablespace, however
at the current time this is not true for the FGA tables. There may be circumstances where it is
desirable to relocate the tables to another tablespace and thus the following instructions are
retained.

Steps to move sys.fga_log$ from the system tablespace to a user defined tablespace.

Run the following create table script (suitably altered for the correct tablespace of course.)

CREATE TABLE SYSTEM.FGA_LOG$

(
SESSIONID  NUMBER NOT NULL,
TIMESTAMP#  DATE NOT NULL,

DBUID VARCHAR2(30) NULL,
OSUID VARCHAR2(255) NULL,
OSHST VARCHAR2(128) NULL,

Auditing_1_6



Audit Package Description

CLIENTID  VARCHAR2(64) NULL,
EXTID VARCHAR2(4000) NULL,
OBJ$SCHEMA  VARCHAR2(30) NULL,
OBJ$NAME  VARCHAR2(128) NULL,
POLICYNAME VARCHAR2(30) NULL,
SCN NUMBER NULL,

SQLTEXT  VARCHAR2(4000) NULL,
LSQLTEXT  CLOB NULL,

SQLBIND  VARCHAR2(4000) NULL,
COMMENTS$TEXT VARCHAR2(4000) NULL,
PLHOL LONG NULL

)

INITRANS 1

MAXTRANS 255

PCTFREE 10

PCTUSED 40

STORAGE (INITIAL 65536
NEXT 1048576
PCTINCREASE 0
MINEXTENTS 1
MAXEXTENTS 2147483645
FREELISTS 1
FREELIST GROUPS 1)

TABLESPACE USERS

LOGGING

/
There might be a desire to turn off logging on the table/tablespace to avoid filling up the redo

logs. This has some implication on recovery scenarios and tracking of audit changes, which may
be unacceptable for the application concerned.

No index has been identified upon the FGA$ table so none has been created upon the new table
above. Experience may indicate that an index is required and if so it would be added at this stage.

As the SYS user run the following:

rename fga_log$ to fga_log_temp$;
create view fga_log$ as
select * from system.fga_log$;

As the SYSTEM user issue the following commands:

grant all on fga_log$ to sys with grant option;
grant delete on fga_log$ to delete_catalog_role;

Then as the SYS user run the $ORACLE_HOME\rdbms\admin\catfga.sql script.

A.3 Maintaining FGA audit records

The following may provide assistance to the maintenance of the audit tables. To remove entries
one must connect as the SYS or internal user to remove entries if the original table is used, or the
system owner if the steps outlines in A1 above have been followed.

If using the original, unmoved table the following is expected:

SQL> connect system/manager
SQL> delete from DBA_FGA_AUDIT_TRAIL;
delete from DBA_FGA_ AUDIT_TRAIL

*

ERROR at line 1:
ORA-01031: insufficient privileges

SQL> connect / as sysdba

SQL> delete from DBA_FGA_AUDIT_TRAIL;

2 rows deleted.

select count(*) from DBA_FGA_AUDIT_TRAIL;

A-2
Auditing_1_6



Audit Package Description

COUNT (*)

A.4 Installation script

This script is run from a SQL*Plus prompt. It is advisable to run this as the sys user connected as
‘sysdba’. If you are unsure how to do this, please consult your Oracle database documentation.

Note that if the security recommended by Oracle is implemented that there will be no public
execute grants upon the DBMS_LOB, DBMS_JOB, UTL_TCP, UTL_HTTP, UTL_SMTP and UTL_FILE
executables and hence any usage of these will cause a compilation error. This affects the
DBMS_LOB package in this particular situation. The script below has been modified to allow for
this change.

rem
rem Script to create the audit pkg owner.

Rem

rem Version 1.3A 26-Feb-04 GSC

rem Version 1.4  26-Apr-04 GSC

rem Version 1.6  17-Sep-07 GSC

rem

prompt 'This script needs to run as the sys user to ensure'
prompt' that the correct permissions are given.'

prompt

prompt 'Please enter audit package owner:'

accept audown

prompt ‘Please enter audit package owner default tablespace’
accept deftblspce

prompt 'Dropping audit package owner if they exist.

drop user &audown cascade;

create user &audown identified by t3 default tablespace &deftblspce temporary tablespace temp;
alter user &audown quota unlimited on &deftblspce;

GRANT CREATE USER TO &audown;

GRANT DROP USER TO &audown;

grant create session to &audown;

GRANT GRANT ANY ROLE TO &audown;

GRANT GRANT ANY OBJECT privilege TO &audown;

GRANT CREATE ANY TABLE TO &audown;

GRANT SELECT ANY TABLE TO &audown;

GRANT DROP ANY TABLE to &audown;

GRANT CREATE ANY TRIGGER TO &audown;

GRANT DROP ANY TRIGGER TO &audown;

grant create procedure to &audown;

grant select on dba_tab_columns to &audown;

grant select on dba_tables to &audown;

grant select on dba_users to &audown;

grant grant any privilege to &audown;

grant execute on dbms_fga to &audown with grant option;

grant execute on dbms_lob to &audown with grant option;

grant select on fga$ to &audown with grant option;

grant select on dba_triggers to &audown;

grant select on dba_objects to &audown;

grant select on dba_fga_audit_trail to &audown with grant option;
prompt ‘Might also need to grant delete privilege on fga_log$ IF it has been moved.’
prompt ‘The assumption here is that it has not.’

grant delete on fga_log$ to &audown with grant option;

prompt 'Changing to Audit Table owner'

connect &audown/t3

Auditing_1_6



Audit Package Description

prompt 'Generating the package.'

prompt

@audit_pkg.sps

@audit_pkg.spb

prompt

prompt 'Now we must change the audit owners password.'
prompt 'Please enter the required password.'

accept passwd

alter user &audown identified by &passwd;

prompt

prompt ' Now check that everything is fine and you can run'
prompt ' audit_pkg.setup_audit('Schema’,'Audit_schema');'
prompt

A.4.1 Alternative PL/SQL script

This following is enclosed for those users that which to implement the install process into an
alternative mechanism, such as an ANT deployment.

-- Create Audit package owner.
-- Version 1.4 26-Apr-04 G S Chapman
-- Version 1.5A 17-Sep-07 G S Chapman
declare
audown varchar2(32):= 'CMTSAUDITOR';
audpasswd varchar2(32) :='T3';
deftbl varchar2(32) := 'USERS';
temptbl varchar2(32) := 'TEMP';
begin
begin
execute immediate
'drop user '||audown||' cascade’;
exception
when others then
NULL;
end;
execute immediate
'create user '||audown||' identified by '| |audpasswd| |
' default tablespace '| |deftbl||' temporary tablespace '||temptbl;

execute immediate 'GRANT CREATE USER TO '||audown;

execute immediate 'GRANT DROP USER TO '||audown;

execute immediate 'grant create session to '||audown;

execute immediate 'GRANT GRANT ANY ROLE TO '||audown;
execute immediate 'GRANT GRANT ANY OBJECT privilege TO '||audown;
execute immediate 'GRANT CREATE ANY TABLE TO '||audown;
execute immediate 'GRANT SELECT ANY TABLE TO '||audown;
execute immediate 'GRANT DROP ANY TABLE to '||audown;
execute immediate 'GRANT CREATE ANY TRIGGER TO '||audown;
execute immediate 'GRANT DROP ANY TRIGGER TO '||audown;
execute immediate 'grant create procedure to '||audown;

execute immediate 'grant select on dba_tab_columns to '| |audown;
execute immediate 'grant select on dba_tables to '||audown;
execute immediate 'grant select on dba_users to '||audown;
execute immediate 'grant grant any privilege to '||audown;
execute immediate 'grant execute on dbms_fga to '||audown;
execute immediate 'grant execute on dbms_lob to '||audown;
execute immediate 'grant select on fga$ to '||audown;

execute immediate 'grant select on dba_objects to '||audown;
execute immediate 'grant select on dba_triggers to '| |audown;
execute immediate 'grant select on dba_fga_audit_trail to '||audown;

A-4
Auditing_1_6



Audit Package Description

dbms_output.put_line(*Need to grant delete on fga_log$ if the table has moved.’);
execute immediate 'grant delete on fga_log$ to '||audown;
end;

Auditing_1_6



